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1
Introduction

C
reating software is a process of refining a concept to an implementation.
This process contains several stages visualized by documents, models
and plans at several levels of abstraction. Mostly, the refinement process
requires creativity of the programmers, but sometimes it is a boring

repetitive task.
This repetitive work is an indication that the program is not written at the most suitable
level of abstraction. The level of abstraction offered by the used programming language
is probably too low to remove the recurring code. We focus on using code generators to
raise the level of abstraction and to automate the repetitive work. In this chapter we
present a number of approaches to implement a code generator.
We discuss the advantages and disadvantages of the different approaches. This thesis
will focus on code generators using templates. We present the research questions in the
context of raising the quality of template based code generators.

1.1 Process of Designing

Designing is the process of deciding how something will look, work, etcetera,
by drawing plans, making models, and so on [2]. One of the design methods
is to stepwise refine an abstract idea or concept to a full-fledged, producible
design. This way of designing, or developing, is used in a broad range of disci-
plines; from storyboard to movie, from equation to electrical amplifier, from
sketch to painting and from software requirements specification to computer
application. This design method or development method can consist of several
intermediate plans, designs or models, which are created in a linear or iterative
process.

For example, Figure 1.1 shows an unfinished painting of Rubens. The painting
provides a showcase of the techniques and methods used by Rubens. Rubens
used an underpainting, still visible in the unfinished painting, as an initial
layer. It helps to define color values for the later painting and to define the
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Figure 1.1 Unfinished painting of Rubens (Henry IV at the Battle of Ivry, Peter Paul Rubens 1628-
1630) [101].

shapes of the final figures. The underpainting can be seen as a kind of model
of the final painting. In general, a model is a particular design of a product,
or it is a simple description of a system, used for explaining how the system
works [2]. We consider the underpainting as a model for the final painting as
it is a design of the final result.

In case of this work of Rubens, the underpainting shows a kind of iterative
process to find the right shapes and composition1. The painting consists mainly
of long sketch lines, where some places are more finished and thus show more
detail, like the head of the horse in the middle of the painting. Consider the
soldier in the middle right behind the horse in the unfinished painting; the
soldier has three arms, one right arm with a sword, one right arm with a lance
and a left arm with a shield. This indicates that Rubens was looking, in a kind
of iterative “trial and error” process, to find the right shape for this soldier, i.e.
with a sword or a lance.

One can observe the same kind of process as used by Rubens during the devel-
opment of software. Requirements are collected, based on the requirements
models defining behavior and data structures are developed, and finally these
models are refined and merged until a working application is created. Many
of these refinement steps in this process require intelligence and creativity of

1 http://www.rubensonline.be/showDetail.asp?artworkID=100575 (accessed on November 30,
2010)

http://www.rubensonline.be/showDetail.asp?artworkID=100575
http://www.rubensonline.be/showDetail.asp?artworkID=100575
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the programmers, but sometimes it is necessary to perform boring repeating
uncreative work. One of the challenges in computer science is to automate
the uncreative work by means of raising the level of abstraction of the used
programming languages.

1.2 Level of Abstraction

Floridi et al. provide a definition of level of abstraction [43], wherein each level
represents a finite but non-empty set of observables. An observable is a typed
variable, not necessarily meant to result from quantitative measurement. A
typed variable is a uniquely-named conceptual entity (the variable) and a set,
called its type, consisting of all the values that the entity may take. For example,
in case of describing a wine, one can define the observable color, which has
a value from the set {white, golden, red, ruby-red, . . .}. Observables belong to a
certain level of abstraction. An observable (or a set of observables) at a higher
level of abstraction can be refined to a set of lower level observables, where
this set of observables contains more elements than the set of observables at a
higher level of abstraction. In other words, when considering a representation
at a lower level of abstraction, the used observables are more granular and
relatively more concrete. For example, in case of wine the level of abstraction
containing the typed variable tasting can be refined by the typed variables nose,
robe, color, acidity, fruit and length, which represent a lower level of abstraction.
Another example of level of abstraction contains the typed variable purchasing,
which is refined by the typed variables maker, region, vintage, supplier, quantity
and price.

The examples for wine abstractions also show that it is usual to have different
levels of abstraction describing different views of a concept. The tasting value is
more relevant while evaluating a wine and the purchasing value more relevant
for ordering a wine. The use of different models makes it easier to communicate
about the concept with different people with different backgrounds. In the
discipline of Software Architecture these models are called views of the system
used to discuss with the different stakeholders [11]. Beside the aspect of
communication, models enable analysis, verification and optimization at the
most suitable level of abstraction. This would have been much harder, if not
unfeasible, when the models are merged and/or refined to a model at a lower
level of abstraction, since it would be too complex to recognize the higher level
artifacts in the lower level representation [56].

Code expressed in a programming language is a model of behavior, which
results from executing the code. We consider a programming language to be
more abstract, when it is necessary for execution to expand its instructions to
more fine grained instructions in a language of a lower level of abstraction.
This closely relates to the definition of level of abstraction given by Floridi.
To illustrate, one can identify the following levels of abstraction in a personal
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computer: electronic circuits, gates, microprocessor and memory, instructions
in assembler, programming languages mapped on assembler, operating system
described in programming languages and applications described in program-
ming languages unified with the operating system. Each level of abstraction
hides implementation details used in lower level of abstractions. For example
logic gates can be implemented using transistors, relays or tubes as long as the
implementation fulfills the requirements of the logic gate. Another example
is a program written in C, not using operating system calls, can be compiled
for an Intel X86 architecture, Sun Sparc architecture or embedded Atmel AVR
architecture.

A language with a higher level of abstraction does not need to have knowl-
edge of the lower level implementation. The implementation knowledge is
embedded in the translation function from the high level code to a lower
level implementation. However, in practice one can notice influences of the
lower levels of abstraction on the higher levels of abstraction, sometimes called
leaky abstractions [107]. For example, the performance of iterating over a large
two-dimensional array depends on the memory organization, whether the iter-
ation could be better implemented horizontally rather than vertically. Another
example is the way an SQL statement is interpreted. The statements

where a=b and b=c and a=c

and

where a=b and b=c

result in the same set of records, but depending on the database implementa-
tion the first one could be faster. Besides performance issues, leak of abstrac-
tions lies at the heart of a number of portability and complexity problems [67].
An example of portability problems caused by leak of abstractions is the use of
virtual memory. In order to improve the performance, objects must be allocated
within the same memory page. When the code is compiled for a new platform,
the apparently portable code could be extremely slow or even crash.

In this thesis we focus on programming at a higher level of abstraction and
the translation of code to a lower level implementation. Programming using a
language with a higher level of abstraction, offers a language with a syntax
that is better suited for the application area, since it hides low level details
not particular related to the application area. Automating programming is
only possible when the more abstract language can be translated in one or
more steps to a language that is executable by a computer. This requirement
especially holds for systematic model refinements, consisting of repetitive
non creative work. We study the implementation of programs writing other
programs, i.e. code generators, in this setting of raising the level of abstraction.
Code generation is a technique that is mainly, but not exclusively, used to
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translate code written in a programming language at a high level of abstraction
to code written in a less abstract target programming language.

In the domain of computer programming it is already common practice to
use general-purpose languages at a high level of abstraction with respect to the
machine. A general-purpose programming language, such as Java, is designed
for a broad spectrum of application domains. An application domain is a set
of related systems that share design characteristics. Compilers are used to
translate code written in these programming languages into machine code
instead of programming directly in machine language. However, these higher
level programming languages are still machine oriented. They do provide
abstraction for register allocation, memory management and so on, but not for
a particular application area, like information systems, industrial processes
or even GUI’s. Although (external) libraries and frameworks can amplify the
feeling, that a language is geared towards some application domain.

The broad applicability of general-purpose languages results in a lack of
expressiveness in a particular application domain. The expressiveness, here
meant, is the level of compactness to state something. There is a trade-off
between expressiveness in a particular domain of a language and the general-
purpose character of the language. This trade-off can be informally defined
as

expressiveness× domain size = constant [56].

A language better suited for a particular application domain has a higher
level of abstraction than a general-purpose language, since concepts of the less
generic language can be translated to a more verbose implementation in the
general-purpose language. At a certain point the domain of a language is so
limited that the language is called a domain specific language (DSL) [80]. The
point where a language becomes domain specific is not quantified. For some
people Cobol is a DSL, while other people consider languages like HTML or
SQL as a DSL. Being acquainted with the level of abstraction of the language is
indispensable for knowing the scope and limits of the language [43]. A more
abstract language has a greater distance from the machine, although some
languages provide escape clauses to define syntax in a lower level of abstraction,
like inline assembler in C.

A general-purpose language with the ability to specify libraries can act as a
domain specific language [56]. The domain specific vocabulary is collected in
functions, classes and parameterized types (C++ Templates or Java Generics).
These extensions can be considered as raising the level of abstraction within
the programming language, given that after the definition of functions and
classes “new syntax”, in the form of types and function calls, can be used.
During compile time or run-time this “new syntax” is internally expanded to
an implementation. One of the implicit tasks of a programmer is to continu-
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ously implement domain specific extensions expressed in the syntax of the
used programming language. During programming a programmer specifies
functions and classes to organize and reuse code. Sometimes a set of functions
and classes reaches such a high level of re-usability for a particular domain
that they are collected in a library.

The possibility of extending a programming language with vocabulary for new
behavior and types, and thus raising the level of abstraction, is limited by the
support of syntax to write these extensions. There exist languages with many
options to write these extensions, like MetaML [110] or Python2. MetaML
allows evaluating functions partially in order to get specialized instantiations.
In Python everything is an object, even the code. Since the code is an object, it
is possible to manipulate the object of the code in order to change it on-the-fly.
Many languages, such as C and C++, lack these features. An example of this
limitation is shown in [10]. The authors have shown that the C++ Standard
Template Library still contains a lot of code clones, despite of the heavily
use of type parameterization offered by C++ Templates. Another example
of a limitation of the programming language is the declaration of exception
handling in Java. The thrown exceptions in Java cannot be parameterized
and code clones are necessary when code is used which must throw another
exception in another context [69]. Code cloning can become a serious issue
when a language cannot express these variations. Source code containing very
large code clones is less reliable than code without clones and source code
containing clones is less maintainable [81]. Code generation can be a solution
to raise the level of abstraction and encapsulate these variations. The next
section discusses the properties of a code generator and a couple of frequently
used implementation approaches.

1.3 Code Generation

A code generator is a program generating other programs. It is a subclass of meta-
programs; the set of programs analyzing or manipulating other programs [103].
In this thesis we limit ourselves to static code generators. In this class of code
generators the generated code is written to disk, or another representation
of a file, before it is processed in a next stage. The opposite case is run-
time code generation, where the generated code is executed immediately. In
this thesis, internally generated code, such as inline function expansion or
template instantiation in a compiler, is considered as run-time code generation.
Otherwise, language features such as expanding inline function calls can also
be seen as a form of code generation.

Code generation is a projection of some input data to output code. This input
data conforms to a language with its own syntax and semantics, independently

2 http://www.python.org (accessed on November 30, 2010)

http://www.python.org
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defined of the code generator. A code generator translates the input data into
another representation, often a representation at a lower level of abstraction.
Therefore it manipulates data, representing sentences in a language, i.e. the
output code. This output code can be everything, from machine code, in
case of compilers, to code of a general purpose programming language, in
case of computer-aided software engineering or model-driven engineering
tools [102, 42].

Inside a code generator code artifacts play two roles. The first role is code
acting as data, this code is called the object code, and is used as building blocks
to construct the output code. The second role is the code manipulating the
object code during generation, this code is called meta code. The meta code
and the object code can be expressed in the same language, this is called a
homogeneous system, or the meta code and object code can be expressed in
different languages in a heterogeneous system [103].

Some disambiguation should be made with respect to the use of the word
meta in this thesis. Consulting the dictionary [2] meta is used as a prefix and
based on the context it means “connected with change” or “beyond”. The
meta code is expressed in the so called metalanguage. The dictionary defines
metalanguage as the words and phrases that people use to talk about or
describe language in general or a particular language. In the discipline of
linguistics, metalanguages, such as Natural Semantic Metalanguage [47], are
developed to express statements about other natural languages, called object
languages, in semantic primitives. The word meta is used in a different way
when discussing code generators. In the context of code generators, terms
with the prefix meta denote the artifacts manipulating the object code instead of
describing the object language. We define the metalanguage as the language in
which the code generator is written. The object language is the language of the
code that is manipulated.

There are multiple reasons to choose for code generation [120]. The main
reasons for using code generation can be categorized in three topics: using an
object language independent of the metalanguage, raising the level of abstrac-
tion, or improving the performance during execution. Using an object language
independent of the metalanguage is a requirement when it is impossible to
use a metalanguage identical to the object language, i.e. homogeneous code
generators. One can think of compilers translating third generation languages
to assembler, or, maybe more important, code generation for communication
reasons, like HTML. Object languages without the possibility to express op-
erations, such as HTML, cannot act as metalanguage and thus homogeneous
code generators are no option for these languages.

The second reason for using code generation is raising the level of abstraction.
Code generation offers a mechanism to program at a higher level of abstraction,
when the used programming language does not offer syntax to express it. For
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example a language does not offer the notion of classes natively.

The last reason is performance. In case the language offers syntax to define
generic constructs, the use of it may at an execution performance penalty.
Code generation can be used to improve the execution performance of an
application, without losing the level of abstraction in the implementation.
During code generation it can pre-calculate the specialization of the code,
so that the overall performance is better during run-time. Calculations are
already performed during generation time. Performance is sometimes better
predictable, for instance when recursive functions are pre-evaluated. Prediction
of time and memory usage is especially important in embedded systems,
where resources are limited.

One of the aims of software engineering is to reuse as much code as possible.
Just as the applicability of domain specific libraries, the availability of off-
the-shelf code generators is limited. Since code generation is used for raising
the level of abstraction, problems solved by a code generator are often very
application specific or domain specific. If a code generator seems to exist for
a specific task there are a few barriers to reuse it. In short, these barriers are;
the output language differs from the used programming language, the code
is not readable and thus not reviewable, and the interfaces do not fit in the
application architecture [98]. These problems can be removed by writing a
proprietary code generator tailored for its task, like proposed in [58].

Unfortunately, constructing code generators is not a trivial task. First, the code
generator should offer the best suited patterns for its level of abstraction and
problem domain. Finding these patterns requires an extensive knowledge of the
problem domain. This requirement is not limited to writing code generators,
but also for writing understandable and reusable domain specific libraries.
Second, a code generator contains code artifacts executed at different stages. A
code generator contains code executed at generation time, meta code, and code
as data used in building blocks for the output code, the object code. A developer
has to be aware continuously of the different execution stages of the different
code artifacts. More inconvenient, artifacts belonging to an execution stage are
mixed with artifacts belonging to the other execution stage(s).

Finding errors in code generators without tool support is hard. Errors in the
meta code are detected during compilation or during the execution of the
code generator. Errors in the output code are harder to find and are detected
when the output code is compiled or executed. In many code generators the
object code is still represented as strings without any internal structure [103].
Debugging these errors is time consuming, since the code generator has to
be corrected, it has to be compiled, code has to be generated and finally the
generated code must be tested. Debugging tools for the meta code do not help,
because the object code is not executed at code generation time and is seen as
data, not as a program.
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There are code generator implementation approaches providing safety. We
define three classes of safety a code generator can provide:

1. no safety;

2. syntax safety;

3. type safety.

The first class of safety contains the code generators providing no guarantees
of the correctness of the output at all. Code generators without notion of the
structure of the output code handle the output code as a sequence of characters.
Beside the consequences for the testing and debugging of this class of code
generators, it can even lead to serious security flaws. One of the top 25 security
bugs caused by these code generators is HTML injection in web applications3,
a vulnerability allowing an attacker to inject browser-executable content into
a dynamic generated web page. The code generator cannot distinguish good
code from malicious code since it only considers the output as a sequence of
characters. Most code generators belong to this class.

The second class of safety contains the code generators guaranteeing that the
output code is at least syntactical correct. A code generator is syntax safe when
for every input it is guaranteed that the generated code is a valid sentence of
the output language.

The third class of safety contains the code generators guaranteeing that the
generated code is also static semantically correct. Static semantics are require-
ments for the code, which cannot be detected by only parsing it, such as checks
for double declared variables and type errors.

The next sections will show a number of code generator implementation
approaches and the safety level they provide.

1.4 Homogeneous Code Generators

As mentioned earlier there are two distinct kinds of code generators: homo-
geneous and heterogeneous [103]. Homogeneous is the collective term for all
meta-programming approaches with equal metalanguage and object language.
These systems have numerous advantages above heterogeneous systems [103]:

� homogeneous systems can be multi-level, where an object-program can
itself be a meta-program that manipulates second-level object-programs.

3 http://cwe.mitre.org/top25/ (accessed on March 11, 2010)

http://cwe.mitre.org/top25/
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1 fun power n = ( fn x => i f n=0

2 then < 1 >
3 e l s e < ~z ∗ ~(power ( n−1) x ) >)
4

5 map( run < fn z => ~(power 3 < z >) >) [ 2 , 4 ]

Figure 1.2 MetaML example.

� In a homogeneous meta-system a single type system can type both the
meta-language and the object-language.

� Homogeneous meta-systems can support reflection, where there is an
operator, “run” or “eval”, which translates representations of programs.
This is what makes run-time code generation possible.

A typical example of a homogeneous meta-programming system allowing
staged programming is MetaML [110]. ML is a general-purpose functional pro-
gramming language. MetaML is a homogeneous meta-programming approach
using ML. It makes it possible to generate ML inside a ML program in the
context of staged programming. Staged programming is a technique introduc-
ing the possibility to control the order of evaluation, sometimes called partial
evaluation. This technique enables the use of a very generic function, specialize
it at compile time and use the specialized version at run-time. Specifying a
precise execution order allows the programmer to control program resources,
like time and space. Whether a statement or term is executed during run-time
or compile time is not a choice of the compiler, but an explicit decision of the
programmer. For example a recursive function can be unfolded during compile
time, so that the run-time memory usage and execution time can be predicted.

Figure 1.2 shows a staged power function defined in MetaML. The result of
the map is [8,64]. In normal execution without staging, for each value in the
list the power function is executed. Since the power function is only used as
the cubic function, in a non staged execution every time the same recursion is
executed. By separating this process in two stages, the calculation of the cubic
function can be done once instead of every time the power function is called. As
shown in the example, first the recursion is calculated via the run instruction,
resulting in the cubic function map( fn z => z * z * z * 1 ) [2,4], and
in the second stage the map function is evaluated.

It should be noted that MetaML programs are complete compilation units and
that the program is executable without staging annotations. This allows the
possibility of strong typing and guarantees the syntactical correctness of the
expanded code. In fact the parser of ML can be used, with added grammar
rules for the stage annotations and the ML type checker with extra scope rules
and bind rules for the variables in the different stages.
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1 # include <iostream >
2

3 template <typename T>
4 T GetMin ( T x , T y )
5 {
6 i f ( x < y ) re turn x ;
7 re turn y ;
8 }
9

10 i n t main ( ) {
11 i n t a =2 , b =7 ;
12 long c =20 , d=4 ;
13 std : : cout << GetMin<int >(a , b ) << std : : endl ;
14 std : : cout << GetMin<long >( c , d ) << std : : endl ;
15 re turn 0 ;
16 }

Figure 1.3 C++ Template example.

We make the definition of a homogeneous system more liberal, by defining
a homogeneous system as one where all the components are specifically
designed to work with each other, whereas in heterogeneous systems at least
one of the components is largely, or completely, ignorant of the existence of
the other parts of the system [111]. Using this new definition we can consider
the following systems also as homogeneous systems: C++ Templates [112],
Template Haskell [104] and Java Generics [17]. As these homogeneous systems
have a lot in common, we will restrict ourselves to discuss C++ Templates.

C++ Templates are a language feature that allows to define functions and
classes based on generic types. Functions or classes can work on many different
data types without being rewritten. This is especially useful, when functionality
depends on the underlying structure and not on the kind of data to operate on.
Examples are stacks, lists, queues and sorting algorithms. As an unintended
feature, C++ Templates also support staged programming [113].

An example of type parameterization via C++ templates is shown in Figure 1.3.
This example shows the definition of a generic comparison template GetMin.
This template is invoked in the body of the main function, where it is param-
eterized with the desired type via the <type> syntax. The same function can
now be used for any numeric type.

Although homogeneous code generators have certain advantages over hetero-
geneous code generator approaches, it is not always possible to use them. The
benefits only hold when code for the same language must be generated, then is
full support for syntax checking and type checking offered by the compiler. In
a heterogeneous situation, where code for another language must be generated,
the internal code expander of the compiler cannot be used. As a result the
safety offered in the homogeneous situation is lost.
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The discussed homogeneous approaches are expanded in the compiler and the
output is not stored to disk in order to process it by another tool. With respect
to our definition of a code generator, where the code is written to a file, these
approaches do not belong to it.

1.5 Heterogeneous Code Generators

Heterogeneous code generators are the set of code generators where the meta-
language and object language are different. These systems have the advantage
that they can realize any possible code generator because they are not limited
to any particular object language [111].

A heterogeneous code generator can be implemented based on different imple-
mentation approaches. An overview can be found in [120]. We will discuss
some commonly used approaches: abstract syntax tree based, printf based
generation, term rewriting and text template based.

1.5.1 Abstract Syntax Trees

A technique to generate code for an arbitrary target programming language
is to instantiate a tree representation of the output code. This tree is called
an abstract syntax tree. In Section 2.5 we provide a formal definition of an
abstract syntax tree. The code generator instantiates a tree representation of
the output code. This tree is transformed to code via a so called unparser. The
advantages of this approach are that the target programming language is not
dependent on the programming language of the generator. The use of a tree
ensures syntactical correctness of the output code, when the tree is based on
a datatype representing the structure of the target programming language.
It is a requirement that the programming language of the code generator is
strongly typed in order to ensure that the tree is instantiated in the correct
way. The syntactical correctness of the output code depends on the level of
detail of the used abstract syntax tree and the correctness of the unparser.

An abstract data type, or API, of the target language is required before one
can build an abstract syntax tree based generator. This abstract data type can
be defined manually, as done in Haskell/DB [79], or an API is off-the-shelf
available, like Jenerator for Java [121], or an API can be generated from a
grammar, like ApiGen [20].

Haskell/DB provides an abstract data type representing the abstract syntax for
SQL queries. The queries are instantiated via this abstract data type and before
sending these queries to the database server, the trees are translated into text
via a set of print functions.
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1 package de . mathema . j e n e r a t o r . paper ;
2 / / i m p o r t s . . .
3 publ ic c l a s s H e l l o J e n e r a t o r {
4 publ ic H e l l o J e n e r a t o r ( ) {
5

6 CClass crea tedClass = new CClass (
7 " de . mathema . j e n e r a t o r . paper " , " HelloWorld " ) ;
8

9 CMethod mainMethod = new CMethod ( C V i s i b i l i t y . PUBLIC ,
10 CType . VOID, " main " ) ;
11 mainMethod . addParameter ( new CParameter (
12 CType . user ( " S t r i n g [ ] " ) , " args " ) ) ;
13 mainMethod . addToBody ( new C l a s s I n s t a n t i a t i o n (
14 crea tedClass . getName ( ) , " app " , t rue ) ) ;
15

16 CConstructor cons = new CConstructor (
17 C V i s i b i l i t y . PUBLIC ) ;
18 cons . addToBody ( new CCode(
19 " System . out . p r i n t l n (\" Hello World ! \ " ) ; " ) ) ;
20

21

22 crea tedClass . addConstructor ( cons ) ;
23 crea tedClass . addMethod ( mainMethod ) ;
24

25 new CodeGenerator ( ) . createCode ( crea tedClass ) ;
26 }
27 / / main method f o l l o w i n g h e r e
28 }

Figure 1.4 Jenerator code generator example [121].

1 package de . mathema . j e n e r a t o r . paper ;
2 publ ic c l a s s HelloWorld {
3 publ ic HelloWorld ( ) {
4 System . out . p r i n t l n ( " Hello World " ) ;
5 }
6 publ ic void main ( S t r i n g [ ] args ) {
7 new HelloWorld ( ) ;
8 }
9 }

Figure 1.5 Jenerator output example [121].

A Jenerator example is shown in Figure 1.4. This listing shows how the tree is
constructed via instantiating types such as CClass and CMethod. These types
represent nodes in the tree. The hierarchical structure of the tree is visible by
the order of calls in the example. First a method node is instantiated and then
a class. The result of the code generator is shown in Figure 1.5. A Hello World
program is generated.
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1 p r i v a t e void genAbstractTypeClass ( ) {
2 p r i n t l n ( " a b s t r a c t publ ic c l a s s " + getClassName ( )
3 + " extends aterm . pure . ATermApplImpl { " ) ;
4 genClassVar iables ( ) ;
5 genConstructor ( ) ;
6 genToTermMethod ( ) ;
7 genToStringMethod ( ) ;
8 genSetTermMethod ( ) ;
9 genGetFactoryMethod ( ) ;

10 genDefaultTypePredicates ( ) ;
11

12 i f ( v i s i t a b l e ) {
13 genAccept ( ) ;
14 }
15 p r i n t l n ( " } " ) ;
16 }
17

18 p r i v a t e void genDefaultTypePredicates ( ) {
19 I t e r a t o r <Type> types = adt . t y p e I t e r a t o r ( ) ;
20 while ( types . hasNext ( ) ) {
21 Type type = types . next ( ) ;
22 genDefaultTypePredicate ( type ) ;
23 }
24 }
25

26 p r i v a t e void genDefaultTypePredicate ( Type type ) {
27 p r i n t l n ( " publ ic boolean i s S o r t " +
28 TypeGenerator . className ( type ) + " ( ) { " ) ;
29 p r i n t l n ( " re turn f a l s e ; " ) ;
30 p r i n t l n ( " } " ) ;
31 p r i n t l n ( ) ;
32 }

Figure 1.6 Printf based generator example (code snippet from ApiGen [20]).

1.5.2 Printf Statements

Printf based generators generate code by printing the code via printf statements
to a file or stream. It is possible, just as with abstract syntax trees, to generate
code for another target language than the language of the generator. The object
code specified in the generator is concrete and therefore better readable. The
printf approach does not depend on external libraries or tools, like an unparser,
and can be instantly implemented in any programming language that provides
print facilities. A drawback of this approach is that it does not provide any
guarantees for correctness of the output.

Examples of generators based on the printf approach are ApiGen [20] and
NunniFSMGen4. Figure 1.6 shows a part of ApiGen.

4 http://sourceforge.net/projects/nunnifsmgen/ (accessed on November 30, 2010)

http://sourceforge.net/projects/nunnifsmgen/
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1.5.3 Term Rewriting

Term rewriting is a branch of computer science with its foundations in equa-
tional logic [8]. It differs from equational logic, since rules are only allowed to
replace the left hand side by the right hand side and not vice versa. Let t1 and
t2 be a term, then a rewrite rule is defined as t1 → t2, where a term matching
t1 is replaced by an instantiation of t2. t2 can again contain patterns which
match on left hand side of other rules in order to allow further rewriting.

Term rewriting allows to define the projection of input data to source code in a
declarative manner by a set of equations, where the left hand side matches on
the input data and the right hand side constructs the output source code. The
evaluation of rewrite rules enables generation of code in a natural way. This
property makes term rewriting a suited solution for generating recursive code,
like nested conditionals and loops. Term rewriting offers some abstraction over
the implementation of a code generator in an imperative language. Despite
this, rewrite rules are necessary to process the structure of the input data.
Term rewrite systems come in different flavors, such as processing terms
in ELAN [15] and Stratego [118], or such as rewriting concrete syntax in
ASF+SDF [13].

Although term rewriting offers advantages, its learning curve is perceived
as steep [66]. This experience is amplified in case the terms are based on an
abstract syntax tree instead of concrete syntax. Beside that one of the issues of
term rewrite systems is the temptation to decompose the object code in almost
atomic elements. Understanding the resulting code is hard when all parts of
the code are scattered over the rewrite rules. This is also concluded in [108],
while investigating XSLT stylesheets [30] for code generation.

We discuss two term rewrite approaches. One applied to terms based on
abstract syntax trees, i.e. Stratego, and one using concrete syntax, i.e. ASF+SDF.

A. Stratego

Stratego is a language based on conditional term rewriting. The form of the
rewrite rules is l : t1 -> t2 where s. The l is the name of the equation, t1
and t2 are terms, and s is an optional conditional. Normally the rewrite rules
are executed via a fixed strategy. The Stratego system provides increased
flexibility by programmable rewriting strategies, allowing careful control over
the application of the rewrite rules.

Before starting to write the transformation one should first define the data
types of the input and output. We borrow an example from [116]. The input
data consists of a set of entities. An entity can contain zero or more properties,
which have a name and a type. Figure 1.7 shows a person entity definition.

This person entity can be transformed to a Java class via a rewrite rule. Since
Stratego is based on terms, the right hand side of the rule is an abstract datatype
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1 E n t i t y ( " Person " ,
2 [ Property ( " fullname " , SimpleSort ( " S t r i n g " ) ) ,
3 . . .
4 Property ( " homepage " , SimpleSort ( " S t r i n g " ) )
5 ]
6 )

Figure 1.7 Data structure containing a Person entity definition.

1 e n t i t y−to−c l a s s :
2 E n t i t y ( x , prop∗) −>
3 ClassDec (
4 ClassDecHead (
5 [ MarkerAnno (TypeName( Id ( " E n t i t y " ) ) ) , Publ ic ( ) ]
6 , Id ( x )
7 , None ( ) , None ( ) , None ( ) ) ,
8 ClassBody (
9 [ ConstrDec (

10 ConstrDecHead ( [ Publ ic ( ) ] , None ( ) , Id ( x ) , [ ] , None ( ) ) ,
11 ConstrBody (None ( ) , [ ] ) )
12 ] )
13 )

Figure 1.8 Rewrite rule to create a class based on an entity definition.

representing the hierarchical structure of the output code. This code must be
unparsed to get a concrete syntax representation. Unparsing is the conversion of
abstract syntax tree to concrete syntax. An example of a Stratego rewrite rule
which matches the data structure of Figure 1.7 is given in Figure 1.8.

The rewrite rule matches on the Entity term on the left hand side and for each
entity it instantiates a Java class. The variable x is used to parameterize the class
with the name of the given entity. In case of the example person entity, x will
become Person. The result of the equation is a tree, which is unparsed and
shown in Figure 1.9. The properties of the Entity are ignored by this example
rewrite rule and as a result not shown in the output listing.

This example shows the application of Stratego in a code generation context.

1 @Entity
2 publ ic c l a s s Person {
3 publ ic Person ( ) { }
4 }

Figure 1.9 Result code of the rewrite
rule.

1 e n t i t y−to−c l a s s :
2 E n t i t y ( x_Class , prop∗) −>
3 |[
4 @Entity
5 publ ic c l a s s x_Class {
6 publ ic x_Class ( ) { }
7 }
8 ]|

Figure 1.10 Rewrite rule using concrete
syntax.
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The use of abstract syntax terms is not easy to read and write. Stratego
offers a mechanism to use concrete syntax instead of abstract syntax in the
rewrite rules [119]. The previous defined rule can be implemented using
concrete syntax as shown in Figure 1.10. Note that the identifier x_Class is
automatically recognized by the Stratego parser as a metavariable.

B. ASF+SDF

Another example of a rewrite system is ASF+SDF [13]. Where Stratego is based
on manipulating abstract syntax trees, ASF+SDF is based on concrete syntax
rewriting. ASF+SDF also ensures that the output code must conform to a
predefined grammar and enforces syntax correctness of the generated code.

ASF+SDF is based on two formalisms. The first is SDF, an acronym for Syntax
Definition Formalism, which is a formalism to specify the syntaxes of (pro-
gramming) languages and to define the function signatures for ASF. We will
discuss SDF in Chapter 2 in detail. The Algebraic Specification Formalism, ASF,
is a rewriting formalism. An ASF specification is a collection of equations. The
equations have a left hand side (lhs) which matches on patterns defined in SDF
and a right hand side (rhs) specifying the result pattern also defined in SDF.
The form of these equations is s = t, where s and t are concrete syntax terms.
Furthermore ASF supports conditional equations with a set of conditions,
which should succeed before the equation is reduced. The form of conditional
equations is s1 = t1 ,..., sn = tn ===> s = t, where all variants of s and t
are concrete syntax terms. During interpretation of the conditional equation,
first the equations before the arrow sign are evaluated and if all succeed, the
equation after the arrow sign is evaluated.

Figure 1.11 shows the Stratego example expressed in ASF. The example defines
the equation for the function generate: Term -> Java using a conditional
rewrite rule. The equation after the arrow defines the transformation of the
input to a piece of Java. Its left hand side is the generate function and includes
a match pattern for the input term. The match pattern includes variables,
recognizable by the $ prefix. Variables must be manually declared in the SDF
grammar, per syntactical sort. The right hand side defines the resulting Java
code. The Java code contains a variable $id, which is not bound in the lhs
pattern. ASF ensures syntax correctness and the variables bound in the lhs are
not of the correct syntactical type. The value for $id is obtained by casting the
$class variable via the function str_to_id. This casting is specified before the
arrow, in case the casting is not successful, the equation will not be applied.

C. RASCAL

This section will briefly discuss RASCAL [72], a domain specific language
for source code analysis and manipulation. It is designed to cover the range
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1 [ e n t i t y−to−c l a s s ]
2 $id := s t r _ t o _ i d ( $ c l a s s )
3 ====>
4 generate ( E n t i t y ( $ c l a s s , $props ) ) =
5 @Entity
6 publ ic c l a s s $id {
7 publ ic $id ( ) { }
8 }

Figure 1.11 Stratego example expressed in ASF.

of applications from pure analyzes to pure transformations and everything
in between. There are a lot of libraries, tools and languages available for
software analysis and transformation, but integrated facilities that combine
both domains are scarce. Tools either specialize in analysis or in transformation,
but not in both. RASCAL combines both domains by providing high-level
integration of code analysis and manipulation on the conceptual, syntactic,
semantic and technical level.

RASCAL is grafted on different already existing languages and paradigms.
Relational calculus is provided for analysis, syntactical analysis is based on
SDF and term rewriting rules are inspired by ASF. The values are represented
as ATerms. Furthermore, concepts of Haskell, Java and Ruby are used.

In short, the requirements for RASCAL resulted in the following features.
It supports the common basic datatypes, such as boolean and strings. Also
lists and other collection data types are supported, including type parametric
polymorphism. Since source-to-source transformation requires concrete syntax
patterns, the types of (parse) trees generated by a given grammar are also
first class RASCAL types. Different pattern matching algorithms, like string
matching based on regular expressions, are provided. Fully typed rewrite rules
as defined by ASF+SDF are available. RASCAL also provides comprehensions
to express the calculation of relation analyzes in a concise way. Finally switch
statements and exception handling as can be found in Java, are integrated in
RASCAL.

RASCAL is suited for code analysis and code synthesis, i.e. code generation.
If source code is to be generated, RASCAL provides various options. As
RASCAL is a language based on different other languages and paradigms, it
supports different approaches to generate code. In essence, all the approaches
discussed in this section are available in RASCAL. First, it is possible to use
print statements with embedded variables. Second, rewrite rules can be used to
instantiate abstract syntax trees, which can be pretty printed to strings. Third,
just as ASF, concrete syntax rewrite rules can be used. Finally, text templates,
as will be discussed in Section 1.5.4 are available. The safety levels of these
different approaches are equal to the discussed variants.
As templates is the topic of this thesis, Figure 1.12 shows an example of a
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1 module demo : : Str ingTemplate
2

3 import S t r i n g ;
4

5 publ ic s t r c a p i t a l i z e ( s t r s ) {
6 re turn toUpperCase ( subs t r ing ( s , 0 , 1 ) )
7 + subs t r ing ( s , 1 ) ;
8 }
9

10 publ ic s t r genClass ( s t r name ,
11 map[ s t r , s t r ] f i e l d s ) {
12 re turn "
13 publ ic c l a s s <name> {
14 < f o r ( x <− f i e l d s ) {
15 s t r t = f i e l d s [ x ] ;
16 s t r n = c a p i t a l i z e ( x ) ; >
17 p r i v a t e <t > <x >;
18 publ ic void set <n>(< t > <x >) {
19 t h i s . <x> = <x >;
20 }
21 publ ic <t > get <n > ( ) {
22 re turn <x >;
23 }
24 <}>
25 }
26 " ;
27 }

Figure 1.12 Example of a RASCAL template (from [71]).

string template in RASCAL. A template in RASCAL is a string with meta
syntax between less-than and greater-than symbols. The meta syntax is re-
placed during evaluation of the template. Since the template is a string, no
guarantees of the syntax correctness are given. It can be called using the call
genClass("Person", fields) and the map:

public map[str, str] fields = (
"name" : "String",
"age" : "Integer",
"address" : "String"

);

The output of the template using this input data is a class Person having three
fields including getter and setter methods. In Section 1.5.4 text templates are
discussed in detail.
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Figure 1.13 Template based generator.

1.5.4 Text Templates

A text template system is the last discussed approach to implement code
generators. This approach is known from its use for instantiating HTML in
dynamic websites or web applications [34]. As a result numerous template
evaluators are designed for instantiating HTML in web applications. Besides
generating HTML, text templates can be used for generating all kinds of
unstructured text, like e-mails or code. Figure 1.13 shows the four components
involved in a text template based generator. These components are input data,
template, template evaluator and generated code.

Since the literature does not provide a formal definition of a template we start
with the informal operational definition provided by Parr [92]:

“A template is an output document with embedded actions which
are evaluated when rendering the template.”

Following this definition a template is a text document that can contain place-
holders. A placeholder is a (syntactical) entity, indicating a missing piece of text.
It contains some action, or expression, declaring how to obtain a piece of text
to replace it. In the most basic form for human interpretation this action is a
sequence of dots, or for automatic processing the action can range from labels
to a piece of code belonging to a general purpose programming language.

More formally, a template is a (text|placeholder)+ pattern, i.e. an arbitrary non-
empty sequence of text fragments and placeholders. The text is the fixed part of
the template and is one-to-one copied to the output document. The placeholder
represents a non-complete part of the text.

In case of templates, the placeholders are the meta code expressed in a meta-
language. Informally, a metalanguage automatically originates at the moment
placeholders are introduced in a piece of text or code. This is not only ap-
plicable for computer languages, but also happens in natural languages. For
example, when one writes a generic agreement or letter where the names are
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replaced by a sequence of dots (. . .). For each new client the dots must be filled
with specific information. The sequence of dots is for human interpretation,
where someone can replace the dots using the context of the document and
environment. Considering a template for source code processed automatically,
the metalanguage must have formal semantics and should contain explicit
instructions.

Automatic processing of templates is performed by a so called template evaluator.
This is an application which interprets a template in order to generate text.
It searches for placeholders, executes the specified action and replaces the
placeholders to complete the output text.

The combination of template and template evaluator constitutes a code genera-
tor. The template contains the application specific part of the code generator,
while the template evaluator is the generic part of the code generator. The
generic part of the code generator is amongst others responsible for handling
the output text, input data processing and other administration tasks such as
directory creation and file creation. Separating the output code patterns from
the generator code improves the understandability of what output the code
generator produces during generation.

The separation between generator code and output code fragments reduces
the complexity compared to the abstract syntax tree approach or printf ap-
proach, where generator code and output code fragments are mixed. In these
approaches the generator logic is mixed with the output code, while the text
template approach separates these two aspects of a generator. Furthermore,
the code patterns in a text template are written in concrete syntax.

Text templates can be used to generate code for every target language. It is
a common pattern for building webpage generators [34], but it is also used
in many code generator frameworks such as model driven engineering tools
like openArchitectureWare5. A few examples of text template evaluators are
Apache Velocity6, StringTemplate [92], ERb[58], Java Server Pages7, FreeMarker8

and Smarty9.

Figure 1.14 shows a template for the Apache Velocity template evaluator. The
$ signs are used for Java object references to obtain values. Instructions for the
template evaluator are prefixed by a #.

This example shows the loop construction #foreach, which loops over a list
of objects and evaluates the body of the loop where the context is set to the
current processed element of the list. The #set directive is used for setting a

5 http://www.openarchitectureware.org (accessed on November 30, 2010)
6 http://velocity.apache.org (accessed on November 30, 2010)
7 http://java.sun.com/products/jsp/ (accessed on November 30, 2010)
8 http://freemarker.org (accessed on November 30, 2010)
9 http://www.smarty.net (accessed on November 30, 2010)
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1 /∗
2 ∗ C r e a t e d on $newDate
3 ∗ g e n e r a t e d by a FUUT−j e a p p l i c a t i o n us ing
4 ∗ V e l o c i t y t e m p l a t e s
5 ∗ /
6 package $package ;
7 publ ic c l a s s $ c l a s s .Name {
8 # foreach ( $ a t t in $ c l a s s . A t t r i b u t e s )
9 protec ted $ a t t . Type $ { a t t .Name } ;

10 #end
11

12 # foreach ( $ a t t in $ c l a s s . A t t r i b u t e s )
13 /∗∗
14 ∗ @return Returns t h e $ a t t . Name
15 ∗ /
16 # s e t ( $uName = " $ { f t . c a p F i r s t ( $ a t t .Name) } " )
17 publ ic S t r i n g get$ {uName } ( ) {
18 re turn $ a t t .Name;
19 }
20

21 /∗∗
22 ∗ @param $ a t t . Name The $ a t t . Name t o s e t .
23 ∗ /
24 publ ic void s e t $ {uName } ( S t r i n g $ { a t t .Name} ) {
25 t h i s . $ { a t t .Name} = $ a t t .Name;
26 }
27 #end
28 }

Figure 1.14 Example of an Apache Velocity template [89].

value. In this example it is used to upper case the first character of the identifier
of the field name to let the output code comply with the Java coding standards.
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Technique Advantages Disadvantages

Homogeneous -No external tools -Mono lingual
-Type safety

Abstract Syntax Tree -Heterogeneous -Output code not concrete
-Syntax safety -Abstract Data Type required

of object language
-Unparser required

Printf -Heterogeneous -No safety
-Output code concrete

Term rewriting -Heterogeneous -Complex technique
-Syntax safety

Text Templates -Heterogeneous -No safety
-Output is concrete
-Generic generator code separated

Table 1.1 Overview advantages and disadvantages code generator implementation approaches.

1.6 Conclusions

The context of this thesis is raising the level of abstraction during programming.
One of the issues in raising the level of abstraction is that models at a higher
abstraction level must be translated to lower level implementations. This
translation can, among other solutions, be performed by a code generator.

The reasons to choose for code generation can be categorized in three topics:
Using an object language independent of the metalanguage, raising the level of
abstraction, or improving the execution performance. Different implementation
approaches of a code generator are discussed. The presented code generator
implementation approaches all have their advantages and limitations. Table 1.1
provides an overview of them.

A homogeneous system is superb in terms of syntax safety and type safety,
because it is a language feature. This is immediately also the drawback for
homogeneous systems. It is only possible to generate code for the language
itself. Further the homogeneous approach can only be used when the output
language can express computations, and thus can act as both metalanguage
and object language. This is not always the case, for instance HTML cannot be
used as metalanguage, since it cannot express behavior.

When it is necessary to generate code for another language than the meta-
language, one can use abstract syntax trees, printf statements, term rewriting
systems, or text templates. The approach using abstract syntax trees can result
in a code generator, whose output code is syntactical correct. The trade-off
is the complexity of building and maintaining code generators based on this
approach. The object code inside the generator is not concrete. It is hard to read
the object code, since it is encapsulated in a data structure representing the
abstract syntax of the metalanguage. A detailed knowledge of the object lan-
guage grammar structure is necessary. Finally having an abstract data type is
not sufficient, an unparser must also be available to transform the instantiated
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syntax tree into text.

Using printf statements removes the problem of invisible object code, since the
object code is concrete. This approach can be used in most languages without
the necessity of external libraries, because printf statements, or equivalent, are
most times directly supported by the language. The drawback of a printf based
generator is its simplicity. The output code written in the printf statements is
handled as strings. Syntax errors are not detected by the generator or by the
compiler of the metalanguage.

Term rewriting allows to define a code generator in a declarative manner by
a set of equations, where the left hand side matches on the input data and
the right hand side constructs the output source code. Some term rewriting
systems, such as ASF+SDF, offer an approach which allows concrete syntax
for the object code. ASF+SDF uses grammars to parse all code in the rewrite
rules; terms may only be replaced by other terms of the same syntactical type,
as a result syntactical correctness is guaranteed. Unfortunately, term rewriting
based code generators do not remove the entangling between the object code
and the code processing the input data and file manipulation.

The text template approach offers abstraction of most of the generic generator
code, which is captured in the template evaluator. Only small chunks of meta
code in the template are necessary to instruct the template evaluator. The
result is that the template looks very similar to the output code it instantiates.
The drawback of text templates is already in the name. The evaluator of text
templates does not consider the object code and handles it as a sequence
of characters and thus no guarantees can be given that the output code is
syntactically correct.

1.7 Problem Statement

The subject of this thesis is template based code generators. The summary in
the previous section brings us to the central research question of this thesis:

Central research question: How can the quality of template based code
generators be improved?

Quality is a broad notion and we need to specify it in more concrete re-
quirements. We are interested in the technical quality of template based code
generators, i.e. the correctness of the output and the computational power of
the template. We already concluded that text templates offer no guarantees
that the output code is correct. Our aim is to increase the guarantees for correct
output and find errors as early as possible, not at the moment the generated
code is compiled or interpreted. Text templates are widely used, for example
in web applications, as a result of their perceived usability. Our aim is not to
affect this level of usability.
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Improving the technical quality makes debugging less hard, since errors are
detected earlier and the origin of the error can be better determined. It also
reduces the chance that generated code or a code generator shipped to a client
contains bugs. Beside the use in the development process of software, the
presented solution offers also increased safety of applications generating code
on the fly.

This thesis consists of an introduction followed by seven chapters and a con-
clusion. Each of these chapters answers a research question in the context of
the central theme and they are arranged in order of dependency. Chapter 2

presents a literature study on the topic of formal languages. It provides the
basic definitions and notations used in this thesis.

Chapter 3 discusses the relation between different grammar classes in order to
obtain the requirements that a metalanguage for code generators should fulfill.
The research question for this chapter is:

Research question 1: What are the requirements of a metalanguage for
code generators?

We use the theory on formal languages to specify the requirements and prop-
erties a metalanguage should satisfy. The relations between concrete syntax,
abstract syntax, parser, unparser and their underlying grammars are discussed.

The research question for Chapter 4 is:

Research question 2: What is a minimal metalanguage to facilitate
templates?

Using the requirements specified in Chapter 3 a metalanguage for templates is
defined. Our aim is not to develop a completely new programming language
and we use existing theory on programming languages to define our metalan-
guage. We show that our metalanguage meets the requirements presented in
Chapter 3 and is still limited to enforce separation of model and view. This
chapter finishes with a comparison of different related template evaluators
used in the industry and the scientific world.

Given the metalanguage, Chapter 5 discusses the research question:

Research question 3: How can we check the syntax of the object lan-
guage and metalanguage in a template simultaneously?

The relation between the grammars of the object language and the meta-
language is presented. It is used to specify a template grammar containing
rules for both object language as well as metalanguage. Having a grammar
containing rules for both languages enables checking of both languages simul-
taneously by a parser. The presented approach is object language parametric
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and every object language can be extended with a metalanguage as long the
object language comes with a context-free grammar.

Checking only the syntax of the template is not sufficient to guarantee that
the output of the template evaluator produces code without syntax errors.
Therefore the research question for Chapter 6 is defined:

Research question 4: How can we guarantee that a template always
generates code without syntax errors?

Parsing a template using the grammar as defined in Chapter 5 results in
a parse tree containing nodes for both languages. We present an approach
to evaluate the meta code and replace it by object language sub parse trees
ensuring that the final output of the evaluator is a valid object language parse
tree. The approach is based on a single tree traversal and uses the object
language grammar to verify that the meta code is substituted by a valid piece
of object code. One of the issues of templates and parsing them is to deal with
ambiguities. We present a generic approach to handle ambiguities introduced
by combining the object language grammar and metalanguage grammar. The
ideas are implemented in a template evaluator called Repleo.

The implementation Repleo enables to answer the research question of Chap-
ter 7:

Research question 5: Can we use the approach to implement real world
code generators?

This chapter shows a number of case studies using Repleo. Repleo is used
for code generation in different application domains; the generation of web
applications, data structures and state machines. Furthermore we show how
the syntax checking of templates results in protection against injection attacks
in web applications.

This thesis mainly concerns the syntactical correctness of templates and gener-
ated code. Beside the syntax, also the static semantic correctness of a template
and the generated code are important. In Chapter 8 we present our results on
the topic of the research question:

Research question 6: Can we determine static semantic errors in meta
code and object code without generating the actual code?

We define checks for the metalanguage and the object language of templates.
A prototype implementation for PicoJava templates is used to validate our
ideas of checking templates. The aim is to reuse as much as possible of the
implementation of the static semantic checker of the object language. We
conclude with suggestions for future work.

This thesis ends with a discussion of its contributions and with final conclu-
sions.
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Preliminaries

T
his chapter provides basic notations, definitions and properties needed
throughout this thesis. We take our notations and definitions from the
literature [31, 33, 39, 59]. This chapter can be skipped on first reading
and referred to when necessary.

2.1 Basic Definitions and Notations

We use formal language theory to study templates and describe their syntax.
This section provides definition for common concepts of formal languages as
we use it throughout the thesis. Our definitions are based on automata and
language theory [31, 33, 39, 59]:

� A symbol is a syntactic entity without any meaning.

� An alphabet is a finite non-empty set of symbols.

� The rank of a symbol is the number of branches leaving it.

� A ranked alphabet is a pair of an alphabet and ranking functions, where
the rank function maps a symbol in the alphabet to a single rank.

� A string is a finite sequence of symbols chosen from the given alphabet.

� A language is the set of all strings belonging to an alphabet, including
the empty string. This definition for “language” may be strange with
the intuitive notion of what language means. However, a language can
indeed be seen as a set of strings, for example C, where the well-formed
programs are a subset of the possible strings that can be formed by the
alphabet of that language. The alphabet of the C language is formed by
symbols existing of keywords, brackets, operators, natural numbers and
the English alphabet. The set of sentences produced by these symbols
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includes the set of well-formed C programs. The set of well-formed C
programs is defined by a context-free grammar for the alphabet and
semantic rules.

� A terminal symbol is a symbol from which sentences are formed and it
occurs literally in a sentence [5], i.e. terminal-symbols are elements of the
alphabet.

� A nonterminal symbol is a variable representing a sequence of symbols
and it can replace a string of terminal symbols or a string existing of a
combination of terminal and nonterminal symbols [5].

We use the concept of tree in this thesis. The trees meant in this thesis are
defined by a number of properties. Based on graph terminology, a tree is finite
(finite number of nodes and branches), directed (top-down), rooted (there
is one node, the root, with no branches entering it), ordered (the branches
leaving a node are ordered left to right) and labeled (the nodes are labeled
with symbols from a given alphabet) [39]. The following terminology will be
used:

� A leaf is a node with rank 0.

� The top of a tree is its root.

� A path through a tree is a sequence of nodes connected by branches
(“leading downwards”).

� A subtree of a tree is a tree determined by a node together with all (the
subtrees of) its children.

We present in this thesis mathematical definitions and theorems based on
formal language theory. We use a naming convention to denote sets, relations,
functions etc. based on the names as they occur in the literature. We have
chosen the names, so they are not ambiguous. The following list presents the
names used and basic definitions.

� k, i, j, p and r are used for integer variables.

� Σ is used to denote an alphabet. For example Σ = {0, 1}, the binary
alphabet and Σ = {a, b, . . . , z} the set of all lower-case letters.

� Σ∗ denotes all strings over an alphabet Σ.

� σ and c for alphabet symbols.

� N for nonterminal alphabets.

� n, A for nonterminal symbols of N.
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� y for sequences of alphabet symbols combined with nonterminal symbols
(i.e. strings, elements of (N

⋃
Σ)∗).

� z for alphabet symbols or nonterminal symbols (z ∈ (N
⋃

Σ)).

� ε is used for the empty string or null value.

� L for languages.

� s for sentences of a language L defined by Σ∗.

� r denotes the rank of a symbol and r ∈N0 and is defined by the ranking
function rσ = rank(σ) where σ ∈ Σ. Each symbol in a ranked alphabet
(see Definition 2.1.1) has a unique rank.

� Σr for the set of symbols of rank r.

� Tr(Σ) denotes the set of trees over a ranked alphabet Σ, i.e. Σ including
a set of ranking functions over Σ.

� t for trees, see Definition 2.1.3.

� a for alphabet symbols with rank 0 (a ∈ Σ0).

� f for alphabet symbols with rank greater than 0 ( f ∈ Σr, where r > 0).

� X is a set of symbols called variables and we assume that the sets X and
Σ0 are disjoint.

� x is a variable x ∈ X and is not used for integer values.

� G for grammars.

Definition 2.1.1. (Ranked alphabet) [39]. An alphabet Σ is said to be ranked
if for each nonnegative integer k a subset Σk of Σ is specified, such that Σk is
nonempty for a finite number of k’s only, and such that Σ =

⋃
k>0Σk. If σ ∈ Σk,

then we say that σ has rank k.

Example 2.1.2. (Ranked alphabet) [39]. The alphabet Σ = {a, b,+,−, ∗} is
made into a ranked alphabet by specifying Σ0 = {a, b}, Σ1 = {−} and
Σ2 = {+, ∗}.

Definition 2.1.3. (Tree) [39]. Given a ranked alphabet Σ, the set of trees over Σ,
denoted by Tr(Σ) is the language over the alphabet Σ∪{[, ]}, where Σ∩{[, ]} =
∅, defined inductively as follows.

(i) If σ ∈ Σ0, then σ ∈ Tr(Σ).

(ii) For k > 1, if σ ∈ Σk and t1, . . . , tk ∈ Tr(Σ), then σ[t1 . . . tk] ∈ Tr(Σ).
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Example 2.1.4. (Tree) [39]. Consider the ranked alphabet of Example 2.1.2.
Then +[∗[a− [b]]a] is a tree over this alphabet, intuitively representing the tree:

+[∗[a− [b]]a] =

+

∗

a −

b

a

Which on its turn represents the concrete expression (a ∗ (−b)) + a.

Definition 2.1.5. (Linear tree) [39]. A term t ∈ Tr(Σ ∪ X) is linear when each
variable is at most used once in t.

Definition 2.1.6. (Substitution) [33]. A substitution (respectively a ground
substitution) m is a mapping from X into Tr(Σ ∪ X) (respectively into Tr(Σ))
where there are only finitely many variables not mapped to themselves. The
domain of a substitution m is the subset of variables x ∈ X such that m(x) 6= x.
The substitution {x1 ← t1, . . . , xk ← tk} maps xi ∈ X on ti ∈ Tr(Σ ∪ X), for
every index 1 ≤ i ≤ k.

Substitutions can be extended to Tr(Σ ∪ X) in such a way that:

∀ f ∈ Σr, ∀t1, . . . , tr ∈ Tr(Σ ∪ X) m( f (t1, . . . , tr)) = f (m(t1), . . . , m(tr)).

Example 2.1.7. (Substitution) [33]. Let Σ = { f (, , ), g(, ), a, b} and X = {x1, x2}.
Let us consider the term t = f (x1, x1, x2). Let us consider the ground substitu-
tion m = {x1 ← a, x2 ← g(b, b)} and the substitution m′ = {x1 ← x2, x2 ← b}.
Then m(t) = t{x1 ← a, x2 ← g(b, b)} = f (a, a, g(b, b)) and m′(t) = t{x1 ←
x2, x2 ← b} = f (x2, x2, b).

Definition 2.1.8. (Tree homomorphism) [33]. Let Σ and Σ′ be two not neces-
sarily disjoint ranked alphabets. For each k > 0 such that Σ contains a symbol
of rank k, we define a set of variables Xk = {x1, . . . , xk} disjoint from Σ and Σ′.

Let hΣ be a mapping which, with σ ∈ Σ of rank k, associates a term tσ ∈
Tr(Σ′, Xk). The tree homomorphism h : Tr(Σ)→ Tr(Σ′) is determined by hΣ as
follows:

� h(a) = ta ∈ Tr(Σ′) for each a ∈ Σ of rank 0,

� h(σ(t1, . . . , tn)) = tσ{x1 ← h(t1), . . . , xk ← h(tk)}
where tσ{x1 ← h(t1), . . . , xk ← h(tk)} is the result of applying the substi-
tution {x1 ← h(t1), . . . , xk ← h(tk)} to the term tσ.
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hΣ is called a linear tree homomorphism when no tσ contains two occurrences of
the same xk. Thus a linear tree homomorphism cannot copy trees.

Example 2.1.9. (Tree homomorphism) [33]. Let Σ = {g(, , ), a, b} and Σ′ =
{ f (, ), a, b}. Let us consider the tree homomorphism h determined by hΣ

defined by: hΣ(g) = f (x1, f (x2, x3)), hΣ(a) = a, hΣ(b) = b. For instance, we
have: If t = g(a, g(b, b, b), a), then h(t) = f (a, f ( f (b, f (b, b)), a)).

2.2 Context-free Grammars

This thesis will focus on the generation of sentences of languages aimed to
express programs executed or interpreted by a computer. The rules for con-
structing valid sentences of these languages can be specified by context-free
grammars. The syntax1 of a language is its valid set of sentences. Compil-
ers or interpreters for most programming languages are based on LL or LR
parsers. LL or LR parsers can handle a subset of the context-free grammars,
which implies that these programming languages are context-free languages.
A context-free language L(G) is specified by a context-free grammar G. A
sentence belonging to the set of sentences specified by a context-free gram-
mar is called a well-formed sentence. The context-free grammar is defined as
follows [51]:

Definition 2.2.1. (Context-free grammar). A context-free grammar (CFG) is a
four-tuple 〈Σ, N, S, Prods〉 where

Σ is a finite set of terminal symbols, i.e. the alphabet.

N is a finite set of nonterminal symbols and N
⋂

Σ = ∅.

S is the start symbol, or axiom, and S ∈ N.

Prods is a finite set of production rules of the form n→ y where n ∈ N
and y ∈ (N

⋃
Σ)∗.

Each context-free grammar Gcfg can be transformed into a Chomsky normal
form without changing the language generated by that grammar [60]. A
context-free grammar of the Chomsky normal form only contains rules of the
forms:

1. A→ ε{c}, where A ∈ N and A is the start symbol;

2. A→ s{c}, where A ∈ N and s ∈ Σ∗;

3. A→ n1n2{c}, where A, n1, n2 ∈ N.

1 The syntax rules do not specify the meaning of a sentence, as a result a syntactical correct
sentence can be nonsense.
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Example 2.2.2 shows a context-free grammar definition for a language based
on boolean algebra.

Example 2.2.2. (Context-free grammar). Let Gbool be a context-free grammar
with, Σ = { ~, &, |, (, ), true, false }, nonterminals N = {B}, start symbol S =
B and rules

Prods = {
B→ “~” B,
B→ B “&” B,
B→ B “|” B,
B→ “(” B “)”,
B→ “true”,
B→ “false”
}

A context-free grammar defines a set of sentences, i.e. the language L(G),
where for each s ∈ Σ a derivation exists S ∗

==⇒
G

s. If a sentence belongs to L(G)

a parse tree can be constructed using the grammar. This tree is derived by
applying the production rules of the grammar to construct the sentence and
it is called the parse tree [5]. Example 2.2.3 shows a parse tree derived from a
sentence of L(Gbool).

Example 2.2.3. (Parse tree). Let s be ~true & false | true, the parse tree of
s using the grammar G is:

dG(s) =

B

B

B

~ B

true

& B

false

| B

true

Note: The language of Example 2.2.2 is ambiguous and we assume that the
operators are parsed left-associative.
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A parse tree represents the hierarchical structure of the sentence expressed by
the production rules of its grammar. Normally such parse trees are automati-
cally constructed from a given sentence when a parser is used based on the
grammar. A parser can, for instance, use algorithms like LL [3] and LR [94].

The parse tree contains enough information to restore the original sentence.
Consider the parse tree of Example 2.2.3, and read the leaves from left to right,
the original sentence is visible. The yield function reconstructs the original
string of a parse tree. It traverses a parse tree in order to compute the original
sentence from it by concatenating the leaves (taking the leaf symbols as letters)
from left to right.

Definition 2.2.4. (Yield). The yield function is defined by the following two
rules:

� yield(a) = a if a ∈ Σ0;

� yield( f (t1, . . . , tk)) = yield(t1)· . . . · yield(tk) if f ∈ Σk and ti ∈ Tr(Σ ∪ N),
where · denotes the string concatenation.

2.3 Regular Tree Grammars

A regular tree language is a set of trees generated by a regular tree grammar. The
definition of regular tree grammars is [33]:

Definition 2.3.1. (Regular tree grammar). A regular tree grammar (RTG) is a
four-tuple 〈Σ, N, S, Prods〉, where:

Σ is a finite set of terminal symbols with rank r ≥ 0.

N is a finite set of nonterminal symbols with rank r = 0 and N ∩ Σ = ∅.

S is a start symbol and S ∈ N.

Prods is a finite set of production rules of the form n → t, where n ∈ N and
t ∈ Tr(Σ ∪ N).

Example 2.3.2 shows a regular tree grammar (taken from [31]).

Example 2.3.2. (Regular tree grammar). Let G be the regular tree grammar
with Σ = {a(, ), b(), c}, nonterminals N = {E, W}, start symbol E, and rules

Prods = {
E→W,
W→ b(W),
W→ b(a(c,c))
}
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The language of this grammar is

L(Grtg) = {b(a(c, c)), b(b(a(c, c))), b(b(b(a(c, c)))), ...}.

The parse steps of the term b(b(a(c, c))) are E ⇒ W ⇒ b(W) ⇒ b(b(a(c, c))),
where⇒ is a derivation step.

Regular tree languages have a number of properties [31], the one being im-
portant for us is recognizability of regular tree languages. Recognizable tree
languages are the languages recognized by a finite tree automaton. Regular
tree languages are recognizable by (non)-deterministic bottom up finite tree
automata and non-deterministic top-down tree automata [33]. The set of lan-
guages recognizable by deterministic top-down tree automata is limited to the
class of path-closed tree languages, a subset of regular tree languages.

2.4 Relations between CFL and RTL

A number of relations can be defined between context-free languages and
regular tree languages [31]. First a regular tree language is a generalization of
context-free languages as any string can indeed be seen as a non-branching
tree.

Furthermore, a tree can be represented as a term. These terms can be parsed
using a context-free grammar, since printing a (sub)tree to text does not depend
on the sibling nodes of that (sub)tree. This context-free grammar of our term
representation is given in Figure 2.4. For example the tree of Example 2.2.2 can
be represented by the term

B(B(B(~, B(true)), &, B(false)), |, B(true)).

More interesting for code generation is the relation between regular tree
languages and the parse trees of context-free languages. The parse function
takes a string and a grammar and returns the parse tree of that string when
the string can be produced by that grammar. The way parser algorithms create
a parse tree shows regularity, which suggests that the parse trees are indeed
regular. A proof that the set of parse trees of a context-free grammar is a
regular tree language can be found in [33]. The following definition shows the
derivation of the regular tree grammar L(Gpt) defining the set of parse trees
of a context-free grammar L(Gc f g).

Definition 2.4.1. (Regular tree grammar for parse trees) [33]. Let Gc f g =
〈Σ, N, S, Prods〉 be a context-free grammar. The regular tree grammar Gpt =
〈Σ′, N′, S′, Prods′〉 defining the parse trees of Gc f g is derived by the following
rules:
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� The start symbol of both grammars is equal: S = S′,

� The set of nonterminals of both grammars is equal: N = N′,

� The alphabet of Gpt is derived by the following rule:
Σ′ = Σ

⋃{ε}⋃{(A, k)|A ∈ N, ∃A → y ∈ Prods with y of length k}. Nor-
mally in parse trees a symbol can have a different number of children,
when alternative production rules have a different pattern length. In tree
languages a symbol must have a fixed rank, so we introduce a symbol
(A, k) for each A ∈ N such that there is a rule A→ y with y of length k.

� The set of productions Prods′ of Gpt is derived by the following rules:

if A→ ε ∈ Prods then A→ (A, 0)(ε) ∈ Prods′.

if (A→ a1 . . . ak) ∈ Prods then A→ (A, k)(a1, . . . , ak) ∈ Prods′.

Example 2.4.2. (Regular tree grammar for parse trees). Since normally in parse
trees a symbol can have different number of children, we give an updated
version of the parse tree displayed in Example 2.2.3:

dG(s) =

(B,3)

(B,3)

(B,2)

~ (B,1)

true

& (B,1)

false

| (B,1)

true

Using the definition given above we can derive the Gpt defining the language
of parse trees of Gbool . The result of the derivation is a regular tree grammar
Gpt with, Σ = { ~, &, |, (, ), true, false, ε, (B, 1), (B, 2), (B, 3) }, nonterminals
N = {B}, start symbol S = B and rules



36 Preliminaries

Prods = {
B→ (B, 2)(“~”, B),
B→ (B, 3)(B, “&”, B),
B→ (B, 3)(B, “|”, B),
B→ (B, 3)(“(”, B, “)”),
B→ (B, 1)(“true”),
B→ (B, 1)(“false)”
}

The following statements hold for context-free grammars and regular tree
grammars:

� L(Gpt) = parse(L(Gc f g))

� L(Gc f g) = yield(L(Gpt)). Hence, also

� L(Gc f g) = yield(parse(L(Gc f g)))

� L(Gpt) = parse(yield(L(Gpt)))

Sentences can be mapped to a parse tree and back to the original sentence. This
is a result of the fact that the parse function does not throw away information,
but it builds a tree with the original sentence distributed over its leaves.

2.5 Abstract Syntax Trees

The set of abstract syntax trees of a language is called the abstract syntax and is
defined by a regular tree grammar. These abstract syntax trees are considered
as the abstract representation of well-formed sentences [36]. The abstract
syntax representation of a sentence is unique, while the textual representation
is usually cluttered with optional and semantically irrelevant details such as
blanks and line feeds. These optional and semantically irrelevant details do we
call syntactic sugar. On the other hand the semantics of a language is concerned
with the meaning of grammatically correct programs [87].

The abstract syntax tree is a representation of a sentence without superfluous
nodes, such as nodes corresponding to keywords and chain rules [76]. A chain
rule is a grammar rule of the form n1 → n2, where both n1 and n2 are
nonterminals.

Example 2.5.1. (Abstract syntax tree). An example of an abstract syntax tree
of the sentence s given in Example 2.2.3 is:
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AST(s) =

Or

And

Not

True

False

True

It can also be represented as a term

AST(s) = Or(And(Not(True), False), True).

2.6 Used Languages and Formalisms

Throughout this thesis we use a number of formalisms. This section discusses
these formalisms, provides their syntax and relates it to the presented the-
ory. Furthermore, the language PICO, used for illustrating purposes, is also
presented here.

2.6.1 The PICO Language

The goal of PICO [13] is to have a simple language, large enough to illustrate
the concepts of parsing, type checking and evaluation. First we give a small
introduction of the PICO language and its grammar.

Informal, the PICO language is the language of while-programs. The main
features of PICO are:

� Two types: natural numbers and strings.

� Variables must be declared in a separate section.

� Expressions can be made of constants, variables, addition, subtraction
and concatenation.

� Statements: assignment, if-then-else and while-do.

A PICO program consists of declarations followed by statements. Variables
must be declared before they can be used in the program. Statements and
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1 begin de c lare input : natural ,
2 output : natural ,
3 repnr : natural ,
4 rep : n a tu ra l ;
5 input := 1 4 ;
6 output := 1 ;
7 while input − 1 do
8 rep := output ;
9 repnr := input ;

10 while repnr − 1 do
11 output := output + rep ;
12 repnr := repnr − 1

13 od ;
14 input := input − 1

15 od
16 end

Figure 2.1 A PICO program.

expressions can be used in the body of the program . An example PICO
program that computes the factorial function is given in Figure 2.12.

2.6.2 Syntax Definition Formalism

Template grammars, as we will present in Chapter 5, can easily become very
ambiguous and dealing with ambiguities is a primary requirement for parsing
templates. The Scannerless Generalized LR (SGLR) algorithm, and its imple-
mentation the SGLR parser [117], can deal with these ambiguities out of the
box. The SGLR parser comes with the Syntax Definition Formalism (SDF) [55]
for defining grammars, which is the main reason for using SDF in this thesis.

In contrast with other parser algorithms, such as LL or LALR, and their used
BNF-like [9] grammar formalisms, SDF supports the complete class of context-
free grammars. This results in the ability of SDF to support modular grammar
definitions. Pieces of grammar can be embedded in modules and imported by
other modules. While combining grammars it is even possible to parameterize
generic modules with nonterminals. The modularity enables combining and
reusing of grammars.

The core of an SDF module consists of the elements of the mathematically
four-tuple definition of a context-free grammar as defined in Section 2.2. In
SDF nonterminals are called sorts and declared after the similar keyword sorts.
Symbols is the global name for literals, sorts and character classes and form the
elementary building blocks of SDF syntax rules. Start symbols are declared after
the keyword context-free start-symbols. Production rules are declared

2 Example borrowed from http://www.meta-environment.org/doc/books//extraction-
transformation/language-definitions/language-definitions.html (accessed on November 30,
2010)

http://www.meta-environment.org/doc/books//extraction-transformation/language-definitions/language-definitions.html
http://www.meta-environment.org/doc/books//extraction-transformation/language-definitions/language-definitions.html
http://www.meta-environment.org/doc/books//extraction-transformation/language-definitions/language-definitions.html
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1 module languages/pico/syntax/Pico
2

3 imports b a s i c /NatCon
4 imports b a s i c /StrCon
5 imports b a s i c /Whitespace
6

7 hiddens
8 context−f r e e s t a r t−symbols
9 PROGRAM

10

11 exports
12 s o r t s PROGRAM DECLS ID−TYPE STATEMENT EXP TYPE PICO−ID
13

14 context−f r e e syntax
15 " begin " DECLS {STATEMENT" ; " }∗ " end "
16 −> PROGRAM { cons ( " program " ) }
17 " dec lare " { ID−TYPE " , " }∗ " ; "
18 −> DECLS { cons ( " de c l s " ) }
19 PICO−ID " : " TYPE −> ID−TYPE { cons ( " dec l " ) }
20

21 PICO−ID " := " EXP −> STATEMENT { cons ( " assignment " ) }
22 " i f " EXP " then " {STATEMENT " ; " }∗
23 " e l s e " {STATEMENT " ; " }∗ " f i "
24 −> STATEMENT { cons ( " i f " ) }
25 " while " EXP " do " {STATEMENT " ; " }∗ " od "
26 −> STATEMENT { cons ( " while " ) }
27

28 PICO−ID −> EXP { cons ( " id " ) }
29 NatCon −> EXP { cons ( " natcon " ) }
30 StrCon −> EXP { cons ( " s t r c o n " ) }
31 EXP "+" EXP −> EXP { cons ( " add " ) }
32 EXP "−" EXP −> EXP { cons ( " sub " ) }
33 EXP "||" EXP −> EXP { cons ( " concat " ) }
34 " ( " EXP " ) " −> EXP { cons ( " bracket " ) }
35

36 " na tur a l " −> TYPE { cons ( " n a tu ra l " ) }
37 " s t r i n g " −> TYPE { cons ( " s t r i n g " ) }
38

39 l e x i c a l syntax
40 [ a−z ] [ a−z0−9]∗ −> PICO−ID { cons ( " pico id " ) }
41

42 l e x i c a l r e s t r i c t i o n s
43 PICO−ID −/− [ a−z0−9]

Figure 2.2 The PICO grammar in SDF.

in sections context-free syntax and lexical syntax. The productions rules
contain a syntactical pattern at the left-hand side and a resulting sort at the right-
hand side. This left-hand side pattern is based on a combination of symbols,
i.e. terminals in combination with nonterminals. Symbols can be declared as
optional via a postfix question mark. In the context-free syntax section a
Layout sort is automatically injected between every symbol in the left-hand
side of a production rule. The Layout sort is an SDF/SGLR embedded sort for
white spaces and line feeds. To illustrate SDF, the PICO language is defined by
the SDF module shown in Figure 2.2.
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SDF also supports concise declaration of associative lists. A list is declared by
its elements and a postfix operator * or +, with the respectively meaning of at
least zero times or at least one time. Lists may also contain a separator, which
are declared via the pattern {Symbol Literal}*, where Symbol defines the
syntax of the elements and Literal defines the separator syntax, for example:
{STATEMENT ";" }*.

The production rules can be annotated with a list of properties between
curling brackets at the right-hand side of the rule. The parser includes these
annotations in the parse tree at the node produced by the production rule.
Tools processing the parse tree can use these annotations.

For example, an abstract syntax for an SDF grammar can be specified using
annotations. Every production rule can be annotated with a constructor value,
which is used to instantiate a node in the abstract syntax tree during desugaring.
The constructor is declared via a cons value. SDF requires that a constructor is
unique for a given sort, and in that way suffices the first requirement of our
desugar function of Definition 3.2.2. It does not require that a constructor is
only used for a fixed rank and thus SDF does not satisfy the requirements to
generate a legal regular tree language. Production rules can also annotated with
the keyword reject. The reject annotation specifies that strings specified by
the rule are rejected for that nonterminal.

Besides these core features of SDF, it supports modularization of grammar
definitions. Every grammar definition file is declared as a module with a
name, which can be imported by other modules. Modules are imported via the
imports keyword followed by the name(s) of imported modules. Sections of a
grammar module can be declared hidden or visible via the keywords hiddens
and exports to prevent unexpected collisions between grammar modules
result in undesired ambiguities. Exported sections are visible in the entire
grammar, while hidden sections are only visible in the local grammar module.
SDF also provides syntax to define priorities and associativity to express
disambiguation rules in a grammar. For further information about SDF, we
refer to the SDF documentation [55].

Considering again the SDF module shown in Figure 2.2. The nonterminals
and production rules are declared in the exported section. The start symbol is
PROGRAM, which is the root sort for a PICO program. In the PICO module the
start symbol is declared hidden to prevent automatic propagation to modules
importing this grammar. The annotation feature of SDF is also used in the
PICO module to specify the abstract syntax tree. The definition for the sorts
NatCon and StrCon, and a module defining white space (spaces, tabs, and new
lines) are imported.

The grammar of Figure 2.2 is used to parse PICO programs, like Figure 2.1.
The abstract syntax tree, result of parsing the program and desugaring the
parse tree is shown in Figure 2.3. The tree is displayed in the ATerm format,
discussed in Section 2.6.3.
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1 program (
2 dec l s ( [
3 decl ( " input " , na t ur a l ) ,
4 decl ( " output " , na t ur a l ) ,
5 decl ( " repnr " , na t ur a l ) ,
6 decl ( " rep " , na t ura l )
7 ] ) ,
8 [
9 assignment ( " input " , natcon ( 14 ) ) ,

10 assignment ( " output " , natcon ( 1 ) ) ,
11 while ( sub ( id ( " input " ) , natcon ( 1 ) ) , [
12 assignment ( " rep " , id ( " output " ) ) ,
13 assignment ( " repnr " , id ( " input " ) ) ,
14 while ( sub ( id ( " repnr " ) , natcon ( 1 ) ) , [
15 assignment ( " output " , add ( id ( " output " ) ,
16 id ( " rep " ) ) ) ,
17 assignment ( " repnr " , sub ( id ( " repnr " ) ,
18 natcon ( 1 ) ) )
19 ] ) ,
20 assignment ( " input " , sub ( id ( " input " ) ,
21 natcon ( 1 ) ) )
22 ] )
23 ]
24 )

Figure 2.3 Abstract syntax tree of PICO program of Figure 2.1.

2.6.3 ATerms

The syntax for terms used in this thesis is based on a subset of the ATerms
syntax [22]. The ATerms syntax is supported by an implementation for Java
and C, which we use in our prototype(s) and case studies.

ATerms have support for lists, which are not directly supported by the pre-
sented regular tree grammars. In our approach lists must be binary trees to stay
fully compatible with the regular tree grammars. The serialized term notation
of the list is only a shorthand notation for these binary trees, i.e. the list

[ "a", "b", "c" ]

has the internal representation

[ "a", [ "b", [ "c" , []]]].

Since the lists of ATerms are internally stored as binary trees, where the left
branch is the element and right branch the list or empty list, the use of ATerms
meets this requirement. The subset of the ATerm language is defined by the
SDF definition of Figure 2.4.

The IdCon and StrCon are respectively defined as the following character
classes [A-Za-z][A-Za-z\-]*3 and ["]~[\0-\31\n\t\"\\]*["].
3 The original character class for IdCon allows numeric symbols in the tail. We do not allow them
to prevent ambiguities in our tree path queries.
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1 module ATerms
2

3 imports StrCon
4 IdCon
5

6 exports
7 s o r t s AFun ATerm
8

9 context−f r e e syntax
10 StrCon −> AFun
11 IdCon −> AFun
12 AFun −> ATerm
13 AFun " ( " {ATerm " , " }+ " ) " −> ATerm
14 " [ " {ATerm " , " }∗ " ] " −> ATerm

Figure 2.4 Subset of ATerm syntax used in this thesis.



3
The Unparser

T
he translators of a regular tree to a sentence of a context-free language
belong to the class of meta programs for instantiating code. A basic
but special variant of this kind of meta programs is the unparser. The
unparser translates an abstract syntax tree into a sentence of a context-

free language. The unparser is semantically neutral, that means, the abstract syntax
tree can be reproduced by parsing and desugaring the output sentence of an unparser.
The unparser is capable to instantiate all sentences of the output language, modulo
layout and other semantically irrelevant syntax. Therefore a metalanguage must be
able to express unparsers, so it is not a limiting factor for writing meta programs for
generating code. This chapter discusses the properties and requirements of the unparser
and shows that a linear deterministic tree-to-string transducer is powerful enough to
express the unparser.

3.1 Introduction

The goal of implementing meta programs for code instantiating is to translate
an input programming language to an output programming language. Since
the scope of these programs is limited to computer languages, we use formal
language theory to obtain the requirements for this kind of meta programs.
We discuss the relations between concrete syntax, parse tree, abstract syntax,
parser, unparser and their underlying grammars.

An overview of these relations is given in Figure 3.1. The circles are sets
of sentences or trees defined by the languages discussed in Chapter 2. The
boxes represent the mapping functions between these sets. These relations are
used to define the requirements for the metalanguage. In Section 3.2, we start
with the discussion of the desugar function, which maps an abstract syntax
tree to a parse tree . This function is called desugar, since all superfluous
syntactical information is removed. In Section 3.3 the unparse function is
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parse

layout

L(Gcfg)

yield

L(Gpt)

desugar

L(Gast)

unparse

Figure 3.1 Relations between languages and their grammars.

presented, which is used to obtain a concrete syntax from an abstract syntax
tree. After that, unparser-completeness is discussed in Section 3.4 and we
conclude with conclusions in Section 3.5.

3.2 Deriving Abstract Syntax Trees

This section discusses the transformation of a parse tree to an abstract syntax
tree (see Section 2.5). The requirement for this transformation is that the
meaning of the original sentence is not altered during the translation from a
parse tree to an abstract syntax tree. This requirement is visualized in Figure 3.1
by the cycle of the mappings unparse, parse and desugar. We define the meaning
of a program by the following requirement: Given a parse tree tpt and an
abstract syntax tree tast representing the same piece of object code and given
a function f1 operating on tpt, resulting in a term t, and f2 operating on
tast resulting in the same t, it is required that f1(tpt) = f2(desugar(tpt)). For
example, the parse tree of a C program and the abstract syntax tree of the same
program should result in the same assembler code after compilation. By means
of that definition, the required detail of the abstract syntax is dependent on the
information used by the function f2 processing it. In other words, a function
only interested in a subset of the semantics of a programming language can
use a less detailed abstract syntax than a function using every detail of the
programming language.

The topic of this thesis is not to design the most compact abstract syntax
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for a given f2, but we need a formal notion of abstract syntax to discuss the
properties of meta programs instantiating code. In practice, an abstract syntax
tree is based on the parse tree modulo layout information and keywords. We
will provide in the next paragraphs an approach for transforming a parse tree
to an abstract syntax tree.

The desugar function can be manually defined in the parser definition, like in
parser implementations such as YACC [65], ANTLR [93] and Beaver1. These
parsers allow to associate a production rule with a semantic action in the
grammar. These semantic actions, for example specified in a third generation
programming language, can directly instantiate an abstract syntax tree.

In case of a parser based solely on a context-free grammar without semantic
actions, such as SGLR [117], the output is a parse tree. An intermediate step is
necessary to transform this parse tree to an abstract syntax tree. An approach
based on a set of heuristics can be used to transform such a parse tree to
an abstract syntax tree, for example presented by Wile [124]. However, this
approach will introduce machine generated names for the nodes. In order to
give full control of the node labels in the abstract syntax, we present a solution
based on augmenting the production rules of a context-free grammar with
a signature label to express this transformation scheme. This signature label
is used to construct a node in the abstract syntax tree. A production rule in
the augmented context-free grammar has the form n → y{c} where n ∈ N,
y ∈ (N

⋃
Σ)∗ and c is an element of an alphabet Σc, not necessarily disjoint

from N
⋃

Σ. Σc is the alphabet of the regular tree grammar belonging to the
abstract syntax. The signature label c is not necessarily equal to the nonterminal
of the production rule, but it is required that a signature label c is utmost used
once for a nonterminal. In other words the pair (n, c), where n ∈ N and c ∈ Σc,
must be unique (see Definition 3.3.2). The signature label is stored as a tuple
in the node labels of the parse tree to use it for the transformation.

Example 3.2.1. (Augmented context-free grammar) The following set of pro-
duction rules show the extension of the context-free grammar of Example 2.2.2
with signature labels:

1 http://beaver.sourceforge.net/ (accessed on November 30, 2010)

http://beaver.sourceforge.net/
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Prods = {
B→ ~ B{Not}
B→ B & B{And}
B→ B | B{Or}
B→ ( B ){Br}
B→ true{True}
B→ false{False}
}

The parse tree of s =~true & false | true using the grammar with
signature information will have the following form:

dG(s) =

<B, Or>

<B, And>

<B, Not>

~<B, True>

true

& <B, False>

false

| <B, True>

true

and the term representation is:

dG(s) =

< B , Or >(
< B, And >(

< B, Not >( ~, <B, True >( true )),
&,
< B, False >( false )

),
|,
< B, True >( true )

)

Having a context-free grammar with signature labels, the abstract syntax tree
can be automatically instantiated from a parse tree. This is executed by the
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desugar function, which consists of two transformations. First it removes chain
production rules, i.e. rules of the form n1 → n2 in the context-free grammar.
Second it replaces the nodes in a parse tree with new nodes, which are labeled
by a signature label c. The new nodes only contain children for the nonterminals
of the original nodes. As a result, the rank of signature label c is equal to the
number of nonterminals in the corresponding production rule of the context-
free grammar.

Definition 3.2.2. (Desugar). The desugar function is defined by the following
equations:

� desugarchildren() = ε;

� desugarchildren(a, x1, . . . , xk) = desugarchildren(x1, . . . , xk), where a ∈ Σ;

� desugarchildren(x1, x2, . . . , xk) = desugar(x1), desugarchildren(x2, . . . , xk),
where x1 ∈ N;

� desugar(< f , c > (x)) = desugar(x), where x ∈ N (this equation removes
chain rules);

� desugar(< f , c > (x1, . . . , xk)) = c, when desugarchildren(x1, . . . , xk) = ε;

� desugar(< f , c > (x1, x2, . . . , xk)) = c(desugarchildren(x1, x2, . . . , xk)),
when desugarchildren(x1, x2, . . . , xk) 6= ε.

Applying the desugar function to the parse tree of Example 3.2.1 will result in
the abstract syntax tree of Example 2.5.1.

Theorem 3.2.3. The abstract syntax tree obtained by applying the desugar
function to a parse tree belongs to a regular tree language [32].

(Proof) Recognizability of trees by finite tree automata is closed under linear
tree homomorphism [39]. The desugar function is a linear tree homomorphism;
subtrees are only removed and not duplicated. Since the abstract syntax tree is
a linear tree homomorphism of the parse tree and the set of parse trees of a
context-free language is a regular tree language [33], the abstract syntax tree
belongs to a regular tree language.

The mapping of a parse tree to an abstract syntax tree is regular, which suggests
there exists a mapping between the regular tree grammar of the parse tree Gpt
and the regular tree grammar of the abstract syntax tree Gast. We show that
there is indeed a mapping:

Definition 3.2.4. (Mapping parse tree grammar to abstract syntax tree gram-
mar). Let Gpt = 〈Σ, N, S, Prods〉 be the regular tree grammar of the parse tree,
the regular tree grammar Gast = 〈Σ′, N′, S′, Prods′〉 is derived via the following
rules:
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� The start symbol of both grammars is equal: S = S′,

� The set of nonterminals of both grammars is equal: N = N′,

� The alphabet of Gast is: Σ′ = Σc. Σc is the alphabet containing the labels
c1, . . . , cp used for augmenting the context-free grammar with signature
labels.

� The set of productions Prods′ of Gast is derived by the following rules:

if < A, c > (z1z2 . . . zk) ∈ Prods then:

A→ c(getnonterminals(z1, z2, . . . , zk)) ∈ Prods′,
_ when getnonterminals(z1, z2, . . . , zk) 6= ε;

A→ c ∈ Prods′,
_ when getnonterminals(z1, . . . , zk) = ε;

if < A, c > (z) ∈ Prods then:

A→ z ∈ Prods′, when z ∈ N;

getnonterminals(z1, z2 . . . , zj) = getnonterminals(z2, . . . , zj),
_ when z1 ∈ Σ;

getnonterminals(z1, z2 . . . , zj) = z1, getnonterminals(z2, . . . , zj),
_ when z1 ∈ N.

getnonterminals() = ε.

Example 3.2.5. (Mapping Gpt to Gast). The result of the mapping of Gpt to Gast
for the language of Example 2.2.2 is a regular tree grammar with Σ = { And(,),
Or(,), Not(), Br(), True, False }, nonterminals N = {B}, start symbol S = B and
rules

Prods = {
B→ Not(B),
B→ And(B, B),
B→ Or(B, B),
B→ Br(B),
B→ True,
B→ False
}

For the sake of completeness, the next theorem shows that the mapping Gpt to
Gast of Definition 3.2.4 indeed holds for every abstract syntax tree resulting of
desugaring tpt ∈ L(Gpt).
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Theorem 3.2.6. Given a Gpt augmented with the signature label, there is a
regular tree grammar Gast defining the set of abstract syntax trees resulting of
desugaring the parse trees of Gpt.

(proof) We show for each form of production rule in the Chomsky normal
form (see Section 2.2), that the mapping of Definition 3.2.4 results in a Gast
producing the languages of desugaring tpt ∈ L(Gpt).

The first production rule in Gcfg is A→ ε{c1}. Following Definition 2.4.1, the
production rule corresponding to Gpt is A →< A, c1 > (ε)2. Mapping this
rule to the Gast grammar results in the rule A→ c1. Parsing the empty string
produces the parse tree: parse(ε) =< A, c1 > (ε). Desugaring this parse tree
produces the abstract syntax tree: desugar(< A(ε), c1 > (ε)) = c1. The abstract
syntax tree c1 is the only tree of L(Gast).

The second production rule in Gcfg is A → s{c2}. Following Definition 2.4.1,
the rule belonging to Gpt is A →< A, c2 > (s). Mapping this rule to the Gast
grammar results in the rule A → c2. Parsing the string s produces the parse
tree: parse(s) =< A, c2 > (s). Desugaring this parse tree produces the abstract
syntax tree: desugar(< A, c2 > (s)) = c2. The abstract syntax tree c is the only
tree of L(Gast).

Finally, we need the inductive case based on the production rule A→ n1n2{c3}.
Given a Gcfg with start symbol A and the production rules

A → s{c2}
A → AA′{c3}
A′ → s{c4}

Following Definition 2.4.1, the rules belonging to Gpt are A →< A, c2 > (s),
A→< A, c3 > (A, A′) and A′ →< A′, c4 > (s). Mapping this rule to the Gast
grammar results in the production rule A → c2, A → c3(A, A′) and A′ → c4.
Given a string s · s, parsing this string produces the parse tree: parse(s · s) =
< A, c3 > (< A, c2 > (s),< A, c4 > (s)). Desugaring this parse tree produces
the abstract syntax tree:

desugar(< A, c3 > (< A, c2 > (s),< A, c4 > (s))) = c3(c2, c4).

The abstract syntax tree c3(c2, c4) is a tree of L(Gast).

2 Note: we omitted the transformation of the symbol A into (A, k) for readability reasons.
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3.3 The Unparser

We have presented the relations between concrete syntax, its abstract syntax
and their grammars. The original sentence can be reconstructed from a parse
tree using the yield function, but in case of an abstract syntax tree this yield
function cannot be used.

In contrast with the parse/yield couple, which can always restore the original
code including layout from a parse tree, this is not the case for abstract
syntax trees. The abstract syntax trees lack information to reconstruct the
original sentence, since the original keywords are implicitly stored in the nodes
and not explicitly in leaves. Per Gast a function is necessary to reconstruct a
concrete syntax representation of its abstract syntax trees. This function is
called the unparse function: It translates an abstract syntax tree into a textual
representation of the sentence [24].

In contrast with the yield function, it is not possible to guarantee that unparsed
code is syntactically equivalent to the parsed code. Superfluous information,
like layout, is not present in the abstract syntax tree and has to be induced by
default rules in the unparser definition. The unparse function can indeed be
used as a code formatter [24]. The unparser cannot restore the original code
for an arbitrary case, except the one, where the layout of the original code
matches the layout syntax defined in the unparser. The following relation
reflects this property:

L(Gcfg) ⊇ unparse(desugar(parse(L(Gcfg))))

However, the unparse function should produce a text which is syntactically
correct and represents the original abstract syntax tree. The unparser is correct
if and only if re-parsing its output sentences reproduce the same abstract
syntax trees as the original inputs [97]. That is, as the couple of unparse and
desugar only executes a syntactical mapping and does not alter the meaning of
the code represented by the concrete syntax or the abstract syntax. The abstract
syntax contains all semantic information, and this information should be
present in the unparsed sentence without altering it. Parsing and desugaring
this unparsed code must result in the same abstract syntax tree, otherwise
information is lost or altered somewhere in the process. The following relation
reflects this property:

L(Gast) = desugar(parse(unparse(L(Gast))))

The signature of theunparse function is:

unparse : Tree→ String

This signature reflects the property that the input of the unparser is a tree
and the result a string. The unparse function traverses a tree, just as the yield
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function does. The unparser differs from the yield function (see Definition 2.2.4)
as it is not a generic tree traversal function, but is tailored for the abstract
syntax grammar of the input. The yield function is a traversal function walking
every tree structure till it detects a leaf, while an unparse function has an action
for every production rule in the regular tree grammar of the abstract syntax.
The unparse function restores the mapping defined by the desugar function.
Where the desugar function removes terminals from the parse tree, the unparser
actions must restore the removed terminals. Terminals are removed from nodes
at different levels in the tree and to restore them actions must be defined for
the nodes where these terminals must be restored. As a result the unparse
function follows the structure of the abstract syntax grammar and can only be
applied to trees produced by that grammar.

The unparse function can be derived from the context-free grammar of the
output language, extended with signature information. For each production
rule in the context-free grammar (minus the chain rules) an action is defined in
the unparse function to traverse the abstract syntax tree and restore terminals
whenever it is needed. An action of the unparse function has a left-hand side
and a right-hand side.

The left-hand side matches on a node in the abstract syntax tree with the
signature label c and the variables x1, . . . , xk. The rank of c is not necessarily
equal to k since the rank of c is equal to the number of nonterminals in the
pattern of the production rule belonging to c. Therefore the variable xi only
exists if a symbol is a nonterminal at index i in the right-hand side of the
corresponding production rule.

The right-hand side of the action is a copy of the pattern described by the
corresponding production rule. It constructs a string s1 · . . . · sk, where s1, . . . , sk
are strings or calls to the unparse function and · denotes the concatenation
operation. The number of strings k in the right-hand side is equal to the number
of symbols in the pattern of the corresponding production rule. At the index i,
when a terminal is defined in the production rule, the string si is equal to the
terminal symbol. In case of a nonterminal, si is a call to the unparser with the
variable xi as argument.

For example, consider the context-free production rule B→ B & B{And}. The
node for this production rule in the abstract syntax tree has the following
pattern B→ And(B, B). The left-hand side of the unparse action will become
unparseB(And(x1, x3)). x2 is not available in the left-hand side, since the second
symbol in the context-free production rule is a terminal “&”. The right-hand
side of the unparse action is unparseB(x1) · “&” · unparseB(x3).

The actions of the unparse function are specific for a nonterminal in the regular
tree grammar of the abstract syntax. The function name of the left-hand side
of the action has a postfix to indicate for which nonterminal the action applies,
for example B. The postfix of the called unparse functions in the right-hand
side of the action is equal to the nonterminal where xi corresponds with in the
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context-free production rule.

An unparser is derived from a context-free grammar by applying the following
rules:

Definition 3.3.1. (Unparse). The unparse function contains a set of actions
Actions, which are derived from the context-free grammar augmented with
signature labels Gcfg = 〈Σ, N, S, Prods〉. The set of actions is obtained by the
following rule:

� if A→ z1 . . . zk{c} ∈ Prods then:

unparseA(c(makeLhs(z1, . . . , zk, 1))) = makeRhs(z1, . . . , zk, 1)
_ ∈ Actions, when makeLhs(z1, . . . , zk, 1) 6= ε;

unparseA(c) = makeRhs(z1, . . . , zk, 1)
_ ∈ Actions, when makeLhs(z1, . . . , zk, 1) = ε;

� makeLhs(z1, z2 . . . , zj, i) = makeLhs(z2, . . . , zj, i + 1), when z1 ∈ Σ;

� makeLhs(z1, z2 . . . , zj, i) = xi, makeLhs(z2, . . . , zj, i + 1), when z1 ∈ N;

� makeLhs(z1, i) = ε, when z1 ∈ Σ;

� makeLhs(z1, i) = xi, when z1 ∈ N;

� makeLhs() = ε;

� makeRhs(z1, z2 . . . , zj, i) = z1 ·makeRhs(z2, . . . , zj, i + 1), when z1 ∈ Σ;

� makeRhs(z1, z2 . . . , zj, i) = unparseZ1(xi) ·makeRhs(z2, . . . , zj, i + 1),
_ when z1 ∈ N;

� makeRhs(z1, i) = z1, when z1 ∈ Σ;

� makeRhs(z1, i) = ε, when z1 ∈ N;

� makeRhs() = ε.

Note that xi in the the right-hand side of makeLhs and makeRhs are only bound
in the instantiated unparse function, see Example 3.3.3.

The desugar function removes nodes in the parse tree belonging to chain
rules in the context-free grammar. An unparser based on a context-free gram-
mar with chain rules contains for these chain rules an action of the form:
unparseA1(c(x)) = unparseA2(x). But the abstract syntax tree generated by
the desugar function never contains a node of the form c(t), so the map-
ping of A1 to A2 is never triggered. Following the process of the desugar
function, we could generate for chain rules an unparse rule of the form
unparseA1(x) = unparseA2(x), but this rule introduces potential nondeter-
ministic behavior, since the left-hand side matches all terms and does not filter
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it on the label of the root node of the term. Therefore, we require that the
context-free grammar used to derive an unparser does not contain chain rules.
In case a context-free grammar contains chain rules of the form A1 → A2,
these rules are removed from the grammar and all occurrences of A2 in the
grammar are replaced by A1.

Theorem 3.3.2. An unparser is linear and deterministic.

(proof) An unparser is linear if for each action no xi occurs more than once in
its right-hand side. Consider the actions of Definition 3.3.1; the right hand side
of an unparser action never contains a duplication of a variable.

Observe that if it contains a duplicated meta-variable, it will break the require-
ment of the unparser that it should not alter the meaning of the abstract syntax
tree. The relations

L(Gast) = desugar(parse(unparse(L(Gast))))

L(Gcfg) ⊇ unparse(desugar(parse(L(Gcfg))))

will not hold anymore. For example, in case a variable is duplicated

unparseB(And(x1, x3)) = unparseB(x1) · “&” · unparseB(x1).

The relations will only hold for abstract syntax trees of the form And(x1, x3),
where x1 and x3 are (recursively) equal. In other situations, parsing and
desugaring the output results in another abstract syntax tree than used for the
input.

The unparser is deterministic if the different actions have different left-hand
sides. This requirement holds for the derived unparser, since it is a requirement
for the augmented context-free tree grammar that the tuples (n, c), where n is
the left-hand side nonterminal of a production rule and c the signature label of
that production rule, are unique. A nonterminal directly corresponds with an
action unparseA in the unparser, and the signature label corresponds with the
label used in the left-hand side of the unparser actions unparseA(c(x1, . . . , xk)).
Since the tuples (n, c) are unique, the left-hand sides of the unparser are unique
and thus the unparser is deterministic.

Example 3.3.3. (Unparse). The unparse function to unparse the abstract syntax
tree of Example 2.5.1 is obtained by applying the rules of Definition 3.3.1 to
the context-free grammar of Example 3.2.1:
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unparseB(Not(x2)) = “~” · unparseB(x2)

unparseB(And(x1, x3)) = unparseB(x1) · “&” · unparseB(x3)

unparseB(Or(x1, x3)) = unparseB(x1) · “|” · unparseB(x3)

unparseB(Br(x2)) = “(” · unparseB(x2) · “)”
unparseB(True) = “true”
unparseB(False) = “false”

Applying this function to the abstract syntax tree

Or(And(Not(True), False), True)

will result in

unparseB(Or(And(Not(True), False), True)) = ~true&false|true

This example shows that the layout of the original sentence is lost and all
spaces are removed. Parsing and desugaring the result of this unparse function
instantiates an abstract syntax tree equal to the original abstract syntax tree.
We assume that brackets are explicitly available in the abstract syntax tree to
restore the priorities and associativities of operators correctly.

In this case removing the spaces has not changed the meaning of the boolean
expression. For some languages it is not allowed to yield a string without a
whitespace character between the unparsed sub strings, since two unparsed
sub strings can become one string without a natural separation. In that case
the right-hand patterns of the unparser must be s1 · t · . . . · t · sk, where t is a
whitespace character. For most languages this is a space, but for some exotic
languages, like whitespace3, another character must be used.

An example of this problem is a sequence of two identifiers which are separated
by a space in the original code. They will be parsed as a single identifier when
they are concatenated by an unparser without using a whitespace character
separating them. This can happen in a language such as Java where method
declarations have a type followed by a method name, where both can be an
identifier.

3.4 Unparser Completeness

The unparser has two specific properties (see Section 3.2) not generally apply-
ing to other meta programs instantiating code:

3 http://compsoc.dur.ac.uk/whitespace/ (accessed on September 23, 2010)

http://compsoc.dur.ac.uk/whitespace/
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� An unparser should not alter the semantic meaning;

� An unparser can instantiate all meaningful sentences of the output lan-
guage.

We call a metalanguage capable to express unparsers unparser-complete. It
seems not necessary that the metalanguage capable to implement the unparser
is Turing-complete. This is suggested by the fact that the unparser as defined
in Definition 3.3.1 shows a lot of similarity with deterministic top-down tree-to-
string transducers [40]. The coming theorems show that indeed the unparser
can be expressed by a deterministic top-down tree-to-string transducer.

Definition 3.4.1. (Top-down tree-to-string transducer) [40]. A top-down tree-
to-string transducer is a 5-tuple M = 〈Q, Σ, Σ′, q0, R〉, where Q is a finite set of
states, Σ is the ranked input alphabet, Σ′ is the output alphabet, q0 ∈ Q is the
initial state, and R is a finite set of rules of the form:

q(σ(x1, . . . , xk))→ s1q1(xi1)s2q2(xi2) . . . spqp(xip)sp+1

with k, p ≥ 0; q, q1, . . . , qp ∈ Q; σ ∈ Σk; s1, . . . , sp+1 ∈ Σ′∗, and 1 ≤ ij ≤ k for
1 ≤ j ≤ p (if k = 0 then the left-hand side is q(c)). M is deterministic if different
rules in R have different left-hand sides. M is linear if, for each rule in R, no xi
occurs more than once in its right-hand side, i.e. no data is copied.

The class of languages a top-down tree-to-string transducer can recognize is
equal to its corresponding finite tree automata [40]. In contrast with a Turing
machine, a top-down tree-to-string transducer cannot change the tree on which
it operates. As a result a top-down tree-to-string transducer can only accept a
subset of languages which a Turing Machine can accept [33].

The next theorems will show that for each context-free grammar an unparser
can be defined using a top-down tree-to-string transducer and that it is linear
and deterministic. Furthermore we show that the unparsers of Definition 3.3.1
can be mapped on a top-down tree-to-string transducer. We start with the
theorem that every context-free grammar can be transformed to a context-free
grammar only containing productions rules of the form A→ s1n1 . . . sinisi+1.

Lemma 3.4.2. For every context-free grammar G generating L(G), an
equivalent context-free grammar G′ exists only containing rules of the form
A→ s1n1 . . . sinisi+1, where si ∈ Σ∗ and si can be ε and ni ∈ N.

(proof) Consider the production rules of the Chomsky normal form of The-
orem 3.2.6. Production rule one and two of the Chomsky normal form are
already of the form A→ s1n1 . . . sinisi+1{c}, where i = 0. The third rule must
be translated using the following mapping A → n1n2 = A → s1n1s2n2s3{c},
where s1, s2 and s3 are ε. Production rules of the form A → εn1εniε{c} pro-
duce the same language as rules of the form A→ n1n2{c}, since ε is empty in
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the sentences produced by the production rule. As a result a grammar based
on production rules of the form A → s1n1 . . . sinisi+1{c} produces the same
language as its equivalent in the Chomsky normal form.

Theorem 3.4.3. A unparser based on a linear deterministic top-down
tree-to-string transducer can be defined for every context-free grammar
augmented with signature labels.

(proof) We show that for each of three forms of production rules of the Chomsky
normal form, see Section 2.2, the relation

L(Gast) = desugar(parse(unparse(L(Gast))))

holds.

First, consider the production rule A → ε{c1}. The abstract syntax tree be-
longing to this rule tast = c1. The tree-to-string transducer belonging to this
production rule is: q(c1) → ε. Applying this tree-to-string transducer to the
abstract syntax tree tast results in q(c1) = ε. Parsing this empty string produces
the parse tree: parse(ε) =< A, c1 > (ε). Desugaring this parse tree produces
the abstract syntax tree desugar(< A, c1 > (ε)) = c1.

Second, consider the production rule A → s{c2}. The abstract syntax tree
belonging to this rule tast = c2. The tree-to-string transducer belonging to this
production rule is: q(c2) → s. Applying this tree-to-string transducer to the
abstract syntax tree tast results in q(c2) = s. Parsing the string s produces a
parse tree parse(s) =< A, c2 > (s). Desugaring this parse tree produces the
abstract syntax tree desugar(< A, c2 > (s)) = c2.

The last production rule is A→ εn1εn2ε{c3}. The abstract syntax tree belong-
ing to this rule tast = c3(t1, t2), where t1 and t2 are the abstract syntax trees
belonging to n1, respectively n2. The tree-to-string transducer belonging to
this production rule is: q(c3(x1, x2))→ εq1(x1)εq2(x2)ε. Applying this tree-to-
string transducer to the abstract syntax tree results in q(c3(t1, t2)) = s1 · s2,
where s1 = q1(t1) and s2 = q2(t2), i.e. s1 and s2 are the result of unparsing the
sub-terms t1 and t2. The ε’s are omitted in the string s1 · s2, since they are empty.
Parsing the string s1 · s2 produces a parse tree parse(s1 · s2) =< A, c > (t′1, t′2),
where t′1 and t′2 are sub parse trees with top nonterminal n1 respectively
n2. The abstract syntax tree is desugar(< A, c3 > (t′1, t′2)) = c3(t1, t2), where
t1 = desugar(t′1) and t2 = desugar(t′2), which is equal to the original abstract
syntax tree.

Since every context-free grammar can be rewritten to the Chomsky normal
form, the unparser can be defined using a top-down tree-to-string transducer
for every context-free grammar.

The proof that the relation

L(Gcfg) ⊇ unparse(desugar(parse(L(Gcfg))))
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also holds is almost equal to the proof of Theorem 3.4.3. One should take
the string s as starting point instead of the abstract syntax tree. The superset
relation is a result of the fact that layout is not available in the abstract syntax
tree and as a result it cannot be literally restored during unparsing. The
language produced by the unparser is thus always a sentence of L(Gcfg), but
the set of sentences of L(Gcfg) is greater than the set of sentences the unparser
can produce.

Theorem 3.4.4. The relation L(Gcfg) ⊇ unparse(desugar(parse(L(Gcfg)))) holds
for the unparser.

(proof) First we show that for each of these three rules in the Chomsky normal
form the relation

L(Gast) = desugar(parse(unparse(L(Gast))))

holds when using a context-free grammar without production rules for layout
syntax.

Consider the three forms of production rules of the Chomsky normal form.
First, consider the production rule A → ε{c1}. The abstract syntax tree be-
longing to this rule tast = c1. The tree-to-string transducer belonging to this
production rule is: q(c1)→ ε. Start with the empty string ε. Parsing this string
produces the parse tree: parse(ε) =< A, c1 > (ε). Desugaring this parse tree
results in the abstract syntax tree: desugar(< A, c1 > (ε)) = tast = c1. Using
this abstract syntax tree tast as input for the unparser results in q(c1) = ε.

Second, consider the production rule A → s{c2}. The abstract syntax tree
belonging to this rule tast = c2. The tree-to-string transducer belonging to
this production rule is: q(c2) → s. Parsing the string s produces a parse tree:
parse(s) =< A, c2 > (s). Desugaring this parse tree produces the abstract
syntax tree: desugar(< A, c2 > (s)) = tast = c2. Using this abstract syntax tree
tast as input for the unparser results in q(c2) = s.

The last production rule is A→ εn1εn2ε{c3}. The abstract syntax tree belong-
ing to this rule tast = c3(t1, t2), where t1 and t2 are the abstract syntax trees
belonging to n1, respectively n2. The tree-to-string transducer belonging to this
production rule is: q(c3(x1, x2)) → εq1(x1)εq2(x2)ε. Parsing the string s1 · s2
produces a parse tree parse(s1 · s2) =< A, c > (t′1, t′2), where t′1 and t′2 are sub
parse trees with top nonterminal n1 respectively n2. The abstract syntax tree
is desugar(< A, c3 > (t′1, t′2)) = tast = c3(t1, t2), where t1 = desugar(t′1) and
t2 = desugar(t′2). Using this abstract syntax tree tast as input for the unparser
results in q(c3(t1, t2)) = s1 · s2, where s1 = q1(t1) and s2 = q2(t2), i.e. s1 and s2
are the result of unparsing the sub-terms t1 and t2.

The previous statements show that the relation

L(Gcfg) = unparse(desugar(parse(L(Gcfg))))
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holds when no layout rules are defined in the context-free grammar. Suppose
we extend L(Gcfg) with layout syntax resulting in L(Gcfg)

′, then L(Gcfg) ⊃
L(Gcfg)

′, since every sentence without layout must be in L(Gcfg)
′, otherwise

the languages are not semantical equal. Thus every sentence the unparser
produce must be at least in L(Gcfg), otherwise the unparse function does not
meet the requirement of the unparser to be semantically transparent.

Theorem 3.4.5. The unparser of Definition 3.3.1 is a linear and deterministic
top-down tree-to-string transducer.

(Proof) The derivation of an unparser using Definition 3.3.1 can be mapped on
a top-down tree-to-string transducer. Considering Definition 3.3.1 the unparser
contains actions of the form:

unparseA(c) = s

unparseA(c(x1, . . . , xk)) = s1 · unparseA′(x1) · . . . · sk · unparseA′′(xk) · sk+1

The similarity of the unparser with the top-down tree-to-string transducer is
obvious. Substitute the occurrences of unparseA by states named qA and the
unparser is translated to a tree-to-string transducer.

The unparser is linear, since variables are not deleted or copied; each occurrence
of xi is once in the left-hand side and once in the right-hand side.

The unparser is also deterministic, since it is derived from a context-free
grammar augmented with signature labels, where the tuples of left-hand side
nonterminal n and signature label c are unique. We require that the tuple of
(n, c) is unique, so all left-hand sides are unique.

These theorems show that an unparser can be specified using a linear deter-
ministic top-down tree-to-string transducer. A metalanguage for a template
evaluator should be powerful enough to express a tree-to-string transducer to
be unparser-complete. At that moment the metalanguage can be used to define
unparsers for abstract syntax trees belonging to context-free languages, and
thus it can be used for instantiating all meaningful sentences of a context-free
language.

3.5 Conclusions

We have discussed the relations between concrete syntax, abstract syntax trees
and their grammars. The unparser translates an abstract syntax to a concrete
syntax and is a meta program instantiating code with two specific properties:
parsing and desugaring its output results in the original abstract syntax tree of
the used input, and the unparser can instantiate all meaningful sentences of the
output language. We showed that a linear deterministic top-down tree-to-string
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transducer fulfills the requirements to implement an unparser. A metalanguage
for this kind of meta programs should at least be powerful enough to express
this kind of tree-to-string transducer, otherwise some sentences of the output
language cannot be instantiated.





4
The Metalanguage

O
ur metalanguage for templates is introduced in this chapter. This meta-
language is strong enough to specify unparsers, and still enforces a
separation of model and view. We base the constructs of this metalan-
guage on the theoretical framework of Chapters 2 and 3. The syntax and

operational semantics of the constructs are given.
The metalanguage is illustrated by means of an implementation of the PICO unparser.
Related template evaluators and their metalanguages are also discussed, including the
implementation of an unparser for the PICO language to show the differences between
the systems.

4.1 Introduction

In this chapter we present a metalanguage for templates based on the theoreti-
cal framework of Chapters 2 and 3. The requirements for our metalanguage
are:

� Strong enough to express the unparser.

� Minimize the possibilities for expressing calculations in the template.

The first requirement guarantees that the metalanguage forms no limitation
on the sentences that templates can instantiate, since an unparser is capable to
instantiate all meaningful sentences of its output language.

The second requirement is to enforce separation of model and view. Inspired
by [92], our metalanguage should be strong enough to express the view, i.e.
unparsers, but it should limit the possibility that model specific code and
calculations are specified in the meta program instantiating the code. This is
essential to prevent the use of templates for computations which are not part
of rendering the view. The availability of a general-purpose metalanguage
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does not prevent to write complete programs in the template, which breaks the
model-view-controller (MVC) architecture. The MVC architecture is discussed
in Section 7.2.3.

We start with a formal definition of code generators, a specific class of meta
programs instantiating code, in Section 4.2. Section 4.3 discusses our meta-
language and provides a formal specification of its operational semantics. We
compare our metalanguage with other template systems in Section 4.5 using a
case study based on the implementation of an unparser for the PICO language.

4.2 Code Generators

In Chapters 2 and 3 we already presented two meta programs for instantiating
code. The first is the yield function, see Definition 2.2.4. The second the unparse
function, see Definition 3.3.1. The yield function reconstructs a sentence from
an arbitrary parse tree of an arbitrary context-free language. It is the most
generic meta program as it generates a sentence from every arbitrary parse
tree. It does not depend on the structure of the tree and only considers the
leaves of the tree. The only requirement for the yield function in order to get a
well-formed output sentence is a well-formed input parse tree.

The unparse function is not limited to parse trees and allows abstract syntax
trees as input. The abstract syntax tree lacks syntactic information, like layout
information, to restore the original code it represents. The unparse function
contains the missing information in its rules to restore the syntactic sugar
missing in the abstract syntax tree. For both the yield function and unparse
function it should be noticed that no semantic information is added to or
removed from the generated sentence. Only the representation of the sentence
is changed.

The unparse function can be considered as a set of small templates, where
each unparse equation contains a subtemplate based on the corresponding
production rule. For example, consider the right hand side of the unparser for
the or case in Example 3.3.3:

unparseB(Or(x1, x3)) = unparseB(x1) · “|” · unparseB(x3).

It consists of two recursive calls to the unparse function in order to convert
subtrees x1 and x3 to strings and it contains the lexical representation of the
or operator, i.e. |. This meta program transforms an input tree with the Or
signature to a concrete syntax representation, without altering its meaning.

Just as the unparse function, the code generator function CG converts a tree
into a string and has the signature:

CG : Tree→ String
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The properties of a code generator are defined by the following definition:

Definition 4.2.1. (Code generator). A code generator CG, instantiating sen-
tences of a given L(Gcfg) modulo layout, is a function producing at least two
sentences of L(Gcfg) and at most the set of sentences defined by L(Gcfg) \ {s},
where s is a sentence and s ∈ L(Gcfg), using an input tree language L(Grtg).

Definition 4.2.1 excludes two variants of meta programs instantiating code as a
code generator. The first excluded variant are the meta programs producing
exactly one sentence of L(Gcfg):

CG(x) = s, where s ∈ L(Gcfg) and x matches every tree.

No external information is necessary to complete the sentence; it is already
complete. All semantic information is a priori available in the result sentence
of the code generator and the input data has no influence on it. Given that
input data is not necessary, the language of the output code is independent
of the input data language. When the input data is empty, i.e. no semantic
information is specified, this meta program will always generate a sentence
s, which means that the level of abstraction of the input data is at the highest
level. Since only one sentence s is generated, its functionality domain is limited
to the semantics of s.

The second variant of the meta programs excluded by L(Gcfg) \ {s} in the
Definition 4.2.1 is the unparser, as defined in Section 3.3. The unparser has
the specific property that the input contains the same semantic information
as the output, where a code generator produces a subset of the sentences of
L(Gcfg). The input language of the unparser is the abstract syntax language
belonging to L(Gcfg). In that case the code generator is neutral with respect to
the behavior and definitions stored in the abstract syntax tree.

Furthermore, for a code generator, the relation

L(Grtg) = desugar(parse(codegenerator(L(G′rtg))))

does not have to hold, and it is not required that Grtg and G′rtg are equal, since
the input data can contain less details than the output code. A code generator
is not necessarily linear and data may be copied, i.e. it may contain rules of
the form CGA( f (x)) = CGA(x) · CGA(x). It must be deterministic, otherwise
it can generate different output sentences for a given input tree.

Example 4.2.2. (Code generator). Considering the unparse function of Exam-
ple 3.3.3, once one or more recursive calls in the right-hand side of the equations
is substituted by a fixed sentence of terminals or a variable is used more than
once in the right-hand side, the unparser becomes a code generator. To illus-
trate this we applied this to the unparse rule for the or. First by substituting
one call by a fixed sentence of terminals:

unparseB(Or(x1, x3)) = unparseB(x1) · “|” · unparseB(x3)
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is changed to:
CGB( f (x)) = “true” · “|” · CGB(x)

It is no longer possible to use it as unparse function, since the set of sentences the
code generator can produce is a subset of the sentences belonging to the output
language L(Gbool). The unparseB(x1) call can return all sentences belonging to
the nonterminal B, while in CGB it is replaced by “true”. “true” ⊂ L(B), so the
sentences CGB can produce is a subset of L(Gbool).

An example of the second case is the nonlinear code generator:

CGB( f (x)) = CGB(x) · “|” · CGB(x)

This code generator always produces sentences of the form s1|s2, where s1
and s2 are equal and s1 and s2 are sentences of L(Gbool), while the unparser
allows to generate sentences where s1 and s2 are not necessarily equal. s1|s2,
where s1 and s2 are equal, are a subset of the sentences where s1 and s2 are
not necessarily equal, thus this code generator also only produces a subset of
sentences of L(Gbool).

Further it is not necessary that CGB accepts the abstract syntax language of
the output language Gbool.

The way an unparser is transformed into a code generator is related to partial
evaluation [44]. Informally, some code generators can be obtained by evaluating
the unparser using a non-complete abstract syntax tree. The result is a not
complete evaluated template.

Considering the semantics, a code generator has the following properties. First,
without input data the code generator cannot produce a valid well-formed
output sentence, since information is missing. Second, the code generator is
not semantic neutral. Contrary to the unparser, the code generator is allowed
to add semantic information to or remove semantic information from the input
data. As a result the input data tree will only generate a subset of sentences
belonging to the output language, or the input data tree can contain more
meaningful information than the sentences of the output language can reflect.

Usually a code generator is used to increase the level of abstraction, and fixed
blocks of code are mixed with placeholders. As a result of the raise of the
level of abstraction, the application domain of the output language is broader
than the input data tree language. Informally, a relationship can be found,
when pieces of object code in the code generator contain less placeholders, the
object code is more complete and contains more semantic information than a
code generator closer to an unparser. The input data becomes more abstract
with respect to the code it instantiates. If a code generator contains a lot of
placeholders, it becomes more like an unparser and the opposite occurs: the
code generator adds less semantic information and the input data becomes
less abstract with respect to the output sentences.
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4.3 Our Metalanguage

The unparse function, see Definition 3.3.1, is our starting point for the design
of the metalanguage used in our templates. This section discusses our meta-
language constructs, which are based on the requirements for implementing
an unparser. Beside the syntax of the constructs, we discuss their formalized
operational semantics.

In this chapter we consider a template as a string of characters1, where it is
allowed to have placeholders containing instructions. A placeholder is written
between the character sequences <: and :>; the so called hedges. These hedges
act as markers to indicate the transition between the object code and the meta
code. Since a template is a string with placeholders these hedges are obligatory;
otherwise it is not possible to make a distinction between object code and meta
code. The syntax of the hedges is free, as long as they are disjoint of character
sequences used in the object language.

The evaluation of the placeholders is executed by the template evaluator. It
searches for placeholders in the string and replaces them using information
from the input data tree. The instructions of the placeholders are evaluated to
obtain a string to replace the placeholders. When all placeholders are replaced
the evaluator is finished.

Considering the unparse function of Section 3.3 we can identify two kinds of
instructions. The first type selects an unparse equation based on matching a
pattern on a piece of the input data and binds meta-variables to subtrees of it.
Second, equations have names of the form unparseA, which are called in the
right-hand side of the equations having a variable as argument. We offer two
constructions which implement this functionality:

� Match-Replace (Section 4.3.4);

� Subtemplates (Section 4.3.3).

Match-Replace is a mechanism to match on input data (sub)trees and depending
on a match, returning another (sub) sentence. Subtemplates enable generation
of recursive structures, like lists and trees. Further we present derived place-
holders, which are abbreviations for constructions using subtemplates and
match-replace placeholders:

� Substitution (Section 4.3.5);

� Conditional (Section 4.3.6);

� Iteration (Section 4.3.7).

1 In Chapter 5 we show that a template is a sentence of a template grammar.
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These placeholder constructs are discussed in the coming sections. We discuss
the metalanguage by means of a (informal) syntax definition and operational
semantics. The operational semantics of the different metalanguage constructs
depends on the way templates are evaluated. We start with the discussion
of the general function evaluating a template. After the general function is
introduced, we describe the syntax and operation semantics of the different
placeholder constructs.

4.3.1 Template Evaluation

An important aspect of understanding the metalanguage is the interpretation
of the language constructs. For this purpose we introduce the eval function,
which evaluates a template using some input data resulting in an output
sentence. The eval function has the following signature:

eval : Template× Templates×MVars→ String.

The eval function has three arguments, the first argument Template contains
the current template (a string containing placeholders) under evaluation, the
other two arguments are context information. The String is the result of the
template evaluation. For now, we assume that the eval function can detect
metalanguage code in the template string and call itself recursively to replace
these placeholders with strings. We do not discuss this detection of placehold-
ers in detail, since we present an approach based on a combination of object
language grammar and metalanguage grammar in Chapter 5.

The context arguments, Templates and MVars, are symbol tables, where
Templates contains (sub)templates and MVars contains meta-variables. Meta-
variables are assigned to (sub)trees of the input data and can be referred in
the meta code. The symbol table Templates is initialized with all (sub)templates
defined at the start of the evaluation. The symbol table MVars contains all as-
signed meta-variables, which is updated during evaluation. Further the MVars
symbol table is scoped, where each meta-variable is associated with a block,
and a meta-variable may only be referred to within the block for which it is
associated. Blocks may be nested within other blocks to an arbitrary level, and
meta-variables may be referred to anywhere within a block. Meta-variables
assigned inside a block override the value of meta-variables with the same
name assigned in a parent block. A scope of a meta-variable consist of those
parts of the program in which a meta-variable may be referred to.

The eval function is not directly invoked to start a template invocation, but
we use a helper function start. This function initializes the context of the eval
function and has the following signature:

start : Templates× InputData→ String,

where Templates is a set of (sub)templates stored in a symbol table and
InputData is a tree representing the input data. Before presenting the equations
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of the eval function, it must be noted that our equations should be interpreted
as a conditional term rewriting system [6]. The equations have the form:

t1 7→ t′1
. . .

ti 7→ t′i
t 7→ t′

where t, t′, t1, t′1, . . . , ti, t′i are terms. The 7→ must be read as results in or maps
to. The equation should be then read as “If the rewriting of t1 results in t′1, . . .,
of ti results in t′i then rewriting of t results in t′”. Terms after the 7→ sign may
contain an updated value, used in the remaining (sub) equations. For example,
consider the equation:

add(bstvars, $root, t) 7→ bstvars

If before the equation bstvars equals to {}, then after evaluation bstvars will hold
the value {root 7→ t}.
The start function is defined as follows:

startblk([]) 7→ bstvars1
add(bstvars1, $root, t) 7→ bstvars2

add(bstvars2, $$, t) 7→ bstvars3
startblk(bstvars3) 7→ bstvars4

start(sttmps, t) 7→ eval(<: template() :>, sttmps, bstvars4)

where sttmps is a symbol table containing the subtemplates, t is the input data
treeÂăand bstvars contains the block-structured symbol table for the meta-
variables. The functions startblk, add and eval, used in the equation of the
start function are defined in the following subsections. The start function as
defined here has some operational consequences: First it assigns the input data
tree to the meta-variables $root and $$, where $root is intended as a global
meta-variable containing the original input data tree. The $$ meta-variable is
an internal meta-variable which is updated to hold a current context of the
input data tree. It has the same behavior as the “normal" meta-variables, but
is only implicitly accessible, since the concrete syntax of meta-variables does
not allow to write $$ as identifier for a meta-variable. Furthermore the start
function shows that a template with the name template is the starting point of
evaluation, since the fixed template in the right-hand side of the start function
contains a call to that template.

The different equations for the recursive eval function are defined by the
semantics of the placeholders in the coming subsections. For completeness, the
cases for the string without placeholders and the empty string are given by the
following equations:

eval(ε, sttmps, bstvars) 7→ ε;

eval(s, sttmps, bstvars) 7→ s, when s does not contain a placeholder.
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4.3.2 Block-Structured Symbol Table

The (sub)templates and meta-variables are stored in symbol tables. We use a
simple symbol table to store the (sub)templates and a block-structured symbol
table for meta-variables. The block-structured symbol table is a simple symbol
table extended with the operations for starting and finishing a block. Both
kinds of symbol tables are defined in [52]. The operations supported by our
symbol tables are:

� add - Adds a meta-variable to a block.

� lookup - Searches for a meta-variable and returns its value.

� startblk - Starts a new block to add meta-variables.

� stopblk - Removes the latest added block of meta-variables.

The standard operations of a symbol table delete and update are not necessary
for our metalanguage, since we do not support reassignment of meta-variables
with a new value in a scope and deletion of meta-variables is also not possible.

First we start with discussing the operations and behavior of a simple symbol
table. A symbol table is modeled by a partial function from symbol, SYM, to
values, VAL:

st : SYM 9 VAL

The arrow “9" indicates that a function from SYM to VAL is not necessarily
defined for all elements of SYM (hence ‘partial’). The subset of SYM for which
the symbol table provides a value is defined as: dom(st). The set of symbols
defined by dom(st) is the alphabet Σst of the symbol table. If a symbol a ∈ Σst,
that is a ∈ dom(st), then st(a) is the unique value associated with a and hence
st(a) ∈ VAL. The notation {a 7→ t} describes a function that is only defined for
a

dom({a 7→ t}) 7→ {a}
which maps a to t

{a 7→ t}(a) 7→ t

More generally we can use the notation

{a1 7→ t1, a2 7→ t2, . . . , ap 7→ tp}

where all the ai’s are distinct, to define a function whose domain is

{a1, a2, . . . , ap}

and whose value for each ai is the corresponding ti. For example, if we have a
number of meta-variables assigned to a subtree of the input data

st = {$lhs 7→ sub( id( “repnr" ), natcon( 1 ) ), $natcon 7→ 1, $id 7→ “repnr"}
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The domain of st is dom(st) = {$lhs, $natcon, $id} and

st($lhs) 7→ sub( id( “repnr" ), natcon( 1 ) )
st($natcon) 7→ 1

st($id) 7→ “repnr"

The notation {} is used to denote the empty symbol table, where dom({}) = ∅.
Initially the symbol table is empty, i.e. st = {}.
The next step is to introduce block-structured symbol tables. The requirement
for a block-structured symbol table is that meta-variables assigned in a parent
block can be looked up in a child block and that a meta-variable assigned in a
child block can override an earlier assigned meta-variable of its parent block(s).
We define a block-structured symbol table as a sequence of simple symbol
table, one for each nested block, where functions in the last defined simple
symbol table override the functions of earlier instantiated symbol tables. First
we give a definition of function overriding.

Definition 4.3.1. (Function overriding) [52]. The operator ⊕ combines two
functions of the same type to a give a new function.
The new function f ⊕ g is defined for an argument a if either

� dom( f ⊕ g) = dom( f ) ∪ dom(g);

� ( f ⊕ g)(a) = g(a), when a ∈ dom(g);

� ( f ⊕ g)(a) = f (a), when a /∈ dom(g) and a ∈ dom( f ).

Example 4.3.2. (Function overriding). An example of function overriding is
shown by the following equations:

{$id 7→ “repnr", $lhs 7→ sub( id( “repnr" ), natcon( 1 ) )}
⊕{$lhs 7→ id( “repnr" ), $rhs 7→ natcon( 1 )}

= {$id 7→ “repnr", $lhs 7→ id( “repnr" ), $rhs 7→ natcon( 1 )}

A block-structured symbol table bst is modeled as a sequence of symbol tables
st, where the first symbol table st is the outermost block and the last st′ is
the innermost block. The empty block-structured symbol table is bst = []. For
example at a given point in the template the bst contains the blocks bst =
[st, st′], where st = {$id 7→ “repnr", $lhs 7→ sub( id( “repnr" ) natcon( 1 ) )}
and st′ = {$lhs 7→ id( “repnr" ), $rhs 7→ natcon( 1 )}. The environment for that
point is a single stenv obtained by combining all the symbol tables of bst using
the equation: stenv = st1 ⊕ . . .⊕ sti, where sti refers to the innermost block.
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The function env, with the signature env : bst → st, obtains an stenv from a
given bst and is defined by the following equations:

env([]) 7→ {}
env([st]) 7→ st

env([st1, st2, . . . , sti]) 7→ st1 ⊕ env(st2, . . . , sti)

We will now provide the equations belonging to the functions add, lookup,
startblk and stopblk operating on a bst. The function startblk, with the signature
startblk : bst→ bst, appends an empty symbol table st to bst and is defined by
the following equations:

startblk([]) 7→ [{}]
startblk([st1, . . . , sti]) 7→ [st1, . . . , sti, {}]

The function stopblk, with the signature stopblk : bst → bst, removes the last
symbol table st to bst and is defined by the following equations:

stopblk([]) 7→ []

stopblk([st1]) 7→ []

stopblk([st1, . . . , sti−1, sti]) 7→ [st1, . . . , sti−1]

The function add, with the signature add : bst × a × t → bst, adds a new
meta-variable to the last added symbol table and is defined by the following
equations:

a /∈ dom(st)
add([st], a, x) 7→ [st ∪ {a 7→ x}]

a /∈ dom(sti)

add([st1, . . . , sti], a, x) 7→ [st1, . . . , sti ∪ {a 7→ x}]

The function lookup, with the signature lookup : bst× a → t, uses the given
block-structured symbol table to lookup the latest defined value t of a given a
and is defined by the following equation:

env(bst) 7→ st
a ∈ dom(st)

lookup(bst, a) 7→ st(a)

The operation add has the precondition that the symbol a is not present in the
innermost symbol table and the operation lookup that the symbol a is present
in the symbol table env(bst). The rules for handling the case when these
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preconditions are not met are not presented here. In practice an error must
be thrown such as meta-variable "a" already defined or meta-variable
"a" not found. Chapter 8 discusses an approach guaranteeing that these
errors are statically detected.

Next sections discuss the syntax and semantics of the placeholder constructs.

4.3.3 Subtemplates

Subtemplates are a mechanism to divide a template in multiple smaller frag-
ments. These subtemplates must each have a unique identifier and can be
invoked from other (sub)templates. The first main reason for having subtem-
plates is to enable recursion; it is possible that a (sub)template can instantiate
itself. Recursion is essential to generate tree or list structures. The second
reason for a subtemplate mechanism is to reduce the number of code clones in
a template definition.

Two constructs are necessary to implement subtemplates. The first is already
mentioned by specifying the signature of the eval function and start function,
namely the declaration of subtemplates. The start function is invoked with a
symbol table of (sub)templates. The concrete syntax of a (sub)template is:

IdCon[ String ],

where IdCon is the name of the subtemplate and String contains the
(sub)template and contains output document characters and placeholders.
A set of (sub)templates is a list of these declarations, which is mapped to the
symbol table sttmps used for the evaluation of the templates. The symbol table
sttmps is initialized by mapping subtemplates of the form IdCon[ String ] to
symbol table functions of the form a 7→ t, where a is equal to the Identifier
and t is equal to the String. The symbol table requires that each a is unique,
thus each template must have a unique identifier. The lexical character class
for IdCon is equal to the character class as defined in Section 2.6.3. The start
function requires that at least one template is defined with the name template.

The second construct is the subtemplate call statement. This placeholder is
used in a template and replaced by the result of an evaluated subtemplate. The
syntax of a subtemplate call placeholder is:

<: IdCon( Expr ) :>,

where IdCon is the identifier of the called subtemplate and Expr contains an
expression to set a new value for the context meta-variable $$. The evaluator
replaces this placeholder by the result of the evaluated subtemplate with
the identifier IdCon. Before the subtemplate is evaluated the expression is
evaluated to obtain a new context meta-variable $$. The operational semantics
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of the subtemplate call placeholder is defined by the following equation:

sttmps(idcon) 7→ s
eval(s1, sttmps, bstvars1) 7→ s′1
eval(s3, sttmps, bstvars1) 7→ s′3
startblk(bstvars1) 7→ bstvars2

add(bstvars2, $$, evalexpr(expr, bstvars2)) 7→ bstvars3
eval(s, sttmps, bstvars3) 7→ s′2

eval(s1<: idcon(expr) :>s3, sttmps, bstvars1) 7→ s′1 · s′2 · s′3

The expression Expr is used to obtain a new value for the internal context
meta-variable $$. Expr supports the following operations:

� Meta-variable lookup ($IdCon);

� String constants ("...");

� Tree path queries (a1b2), see Definition 4.3.3;

� String concatenation (Expr + Expr);

� No operation.

The syntax of the expressions is defined by the following set of context-free
production rules:

Expr→ Expr + Expr
Expr→ $IdCon
Expr→ String
Expr→ Treequery
Expr→ $IdCon Treequery
Expr→ ε

The string concatenation is only allowed when both expressions reduces to
strings, i.e. leaf symbol. The evaluation of the expressions is defined by the
following equations:

evalexpr(e1, bstvars) 7→ e′1
evalexpr(e2, bstvars) 7→ e′2

rank(e′1) = 0
rank(e′2) = 0

evalexpr(e1 + e2, bstvars) 7→ e′1 · e′2
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c ∈ Σvars
lookup(bstvars, c) 7→ t

evalexpr(c, bstvars) 7→ t

lookup(bstvars, $$) 7→ t
evaltreequery(t, tq) 7→ t′

evalexpr(tq, bstvars) 7→ t′

c ∈ Σvars
lookup(bstvars, c) 7→ t

evaltreequery(t, tq) 7→ t′

evalexpr(ctq, bstvars) 7→ t′

evalexpr(c, bstvars) 7→ c

evalexpr(ε, bstvars) 7→ lookup(bstvars, $$)

The tree path queries are (sub) sentences of the path language belonging to
the regular tree grammar of the input data. Path languages for regular tree
languages are defined by the following definition:

Definition 4.3.3. (Path language) [33]. Let t be a ground term, the path lan-
guage π(t) is defined inductively by:

� if t ∈ Σ0, then π(t) = t;

� if t = f (t1, . . . , tr) then π(t) =
⋃i=r

i=1{ f · i · s|s ∈ π(ti)}.

Example 4.3.4. (Path language) [31]. For t = a(b(c), a(c, c)) the path language
π(t) is π(t) = {a1b1c, a2a1c, a2a2c}.

A tree path query is a (sub) sentence of π(t), where t is the tree of the current
context meta-variable $$ or the tree obtained from the meta-variable symbol
table. The evaluation of a tree path query starts at the root of the tree t and
selects a subtree or leaf symbol by sequential stepping down through the tree
using the nodes specified in the query. The subtree or leaf symbol where the
tree path query points to is returned by the tree path query evaluator for
further processing by the expression evaluator.

The input is represented as an ATerm [22], see Section 2.6.3. The ATerm format
supports lists, but we do not support selecting an element in these lists; a tree
path query may only point to a list node. The evaluation equations for a tree
path query are given below:
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f = c
r ≥ i

evaltreequery( f (x1, . . . , xr), 〈c, i, t〉) 7→ evaltreequery(xi, t)

f = c
r ≥ i

evaltreequery( f (x1, . . . , xr), 〈c, i〉) 7→ xi

f = c
r < i

evaltreequery( f (x1, . . . , xr), 〈c, i, t〉) 7→ ε

f = c
r < i

evaltreequery( f (x1, . . . , xr), 〈c, i〉) 7→ ε

f 6= c
evaltreequery( f (x1, . . . , xr), 〈c, i, t〉) 7→ ε

f 6= c
evaltreequery( f (x1, . . . , xr), 〈c, i〉) 7→ ε

evaltreequery([x1, . . . , xr], 〈c, i, t〉) 7→ ε

evaltreequery([x1, . . . , xr], 〈c, i〉) 7→ ε

evaltreequery([x1, . . . , xr], 〈c〉) 7→ ε

c′ = c
evaltreequery(c, 〈c′〉) 7→ c′

c′ 6= c
evaltreequery(c, 〈c′〉) 7→ ε

Note for expressing tree path queries in the evaltreequery we mapped a tree
path query string to a nested set of tuples of the form 〈c, i, t〉, 〈c, i〉 or 〈c〉,
where c is the current node label, i the index and t the tail of the tree path
query. For example a1b1c is mapped to 〈a, 1, 〈b, 2, 〈c〉〉〉.
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1 template [
2 Lorem ipsum dolor s i t amet , <: sub ( ) : > .
3 I n t e g e r elementum porta f a c i l i s i s .
4 ]
5

6 sub [
7 c o n s e c t e t u r a d i p i s c i n g e l i t
8 ]

Figure 4.1 Subtemplate example.

Example 4.3.5. (Expressions). Table 4.1 shows the evaluation result of a number
of expressions. We have chosen these examples to demonstrate different kinds
of expressions. The tree provided as context for the tree path query evaluation
is: t = a(b(“s1”), a([c(“s2”), c(“s3”)])).

Example 4.3.6. (Subtemplate placeholder). An example of the declarations
of subtemplates is shown in Figure 4.1. The result of this template is after
evaluation:

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Integer elementum porta facilisis.

The <: sub( ) :> calls the subtemplate sub and inserts the result in the calling
template. The call has no expression, since no input data context has to be
selected.

4.3.4 Match-Replace

The match-replace placeholder is a construct to specify a finite set of match
rules containing a result string. It is a kind of switch-case statement to select

Expression Result

“a” “a”
“a” + “b” “ab”
a1b1 “s1”
a1 b(“s1”)
a2a1 [c(“s2”), c(“s3”)]
a2a1c1 ε
b1 ε
a1b1 + “a” “s1a”
a1b1 + a1b1 “s1s1”

Table 4.1 Expression examples.
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a result string to replace itself. This result string may contain placeholders,
which are evaluated before it is used to replace the match-replace placeholder.
The syntax of the match-replace is:

<: match :>
<: Matchpattern =:> String
...
<: Matchpattern =:> String

<: end :>

As the syntax shows, the match-replace contains a set of match-rules mr,
which return a string. The match-rules contain a match-pattern and a result
string, in equations we use the abstract notation 〈mp, s〉, where mp is the
Matchpattern and s the String, for match-rules. We use a simple match-rule
selection algorithm, where the first rule with a successful match is selected. It
is possible that no match-rule matches the current (sub)tree of the input data.
In that case an error is thrown.

Match-rules are matched against the current tree assigned to the internal
meta-variable $$. The match-pattern may define meta-variables, which are
bound to subtrees of the matched tree and are stored in the current scope
of the symbol table. The string of the selected match-rule is evaluated using
the symbol table containing the meta-variables assigned during the matching
process. The scope of a meta-variable is the string belonging to the successful
match-rule, including recursively applied placeholders. Meta-variables in inner
blocks hide meta-variables assigned in parent blocks, as the semantics of the
block-structured symbol table already defines.

We will now first discuss the evaluation of the match-replace placeholder itself.
After that, we formalize the match-patterns and tree matching algorithm. In
case of an error the match-replace returns an object ERROR. In practice such
object can be implemented as an alternative type for string or an exception,
and it should hold a message to inform the user.

eval(s1, sttmps, bstvars1) 7→ s′1
eval(s3, sttmps, bstvars1) 7→ s′3

lookup(bstvars1, $$) 7→ t
startblk(bstvars1) 7→ bstvars2

findmatch(t, [mr1, . . . , mri], bstvars2) 7→ 〈s, bstvars3〉
eval(s, sttmps, bstvars3) 7→ s′2

eval(s1<: match :>[mr1, . . . , mri] <: end :>s3, sttmps, bstvars1) 7→ s′1 · s′2 · s′3
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eval(s1, sttmps, bstvars1) 7→ s′1
eval(s3, sttmps, bstvars1) 7→ s′3

lookup(bstvars1, $$) 7→ t
startblk(bstvars1) 7→ bstvars2

findmatch(t, [mr1, . . . , mri], bstvars2) = ε

eval(s1<: match :>[mr1, . . . , mri] <: end :>s3, sttmps, bstvars1) 7→ ERROR

match(t, mr1, bstvars) = ε

findmatch(t, [mr1, mr2 . . . , mri], bstvars) 7→ findmatch(t, [mr2 . . . , mri], bstvars)

match(t, mr, bstvars) = ε

findmatch(t, [mr], bstvars) 7→ ε

match(t, mr1, bstvars) 7→ 〈s, bstvars〉
findmatch(t, [mr1, mr2 . . . , mri], bstvars) 7→ 〈s, bstvars〉

match(t, mr, bstvars) 7→ 〈s, bstvars〉
findmatch(t, [mr], bstvars) 7→ 〈s, bstvars〉

The syntax of the match-pattern is similar to the ATerm tree syntax, defined in
Section 2.6.3, augmented with syntax for meta-variables. The alphabet of these
trees Σ is syntactically limited by IdCon, the syntax of the meta-variables is
defined as an IdCon prefixed with a dollar-sign. The alphabet of meta-variables
Σvars is thus always disjoint from Σ, since the dollar-sign is not allowed
for IdCon. Note that the internal used meta-variable $$ is always disjoint of
Σ ∪ Σvars, since its syntax is not a sentence of IdCon neither of IdCon prefixed
with a dollar-sign. The rank of a meta-variable is c ∈ Σvars is rank(c) = 0, as
it is always a leaf node. It is allowed to have lists in the ATerm tree syntax.
These lists are a shorthand notation for binary trees, and are matched via the
pattern [mp1, . . . , mpk], where mp1, . . . , mpk are match-patterns. The underlying
binary tree structure of lists has as effect that the last match-pattern mpk in the
pattern [mp1, . . . , mpk] is matched against the tail of the list. The tail holds the
remaining list or empty list.

The tree pattern matcher is implemented as a root-to-frontier pattern
matcher [31]. The matching mechanism is minimalistic and does for example
not support associative-commutative matching such as provided by TOM [84].
It tries to match the tree, and during matching it adds the assigned meta-
variables to the symbol table bstvars. The match function has the signature:
Tree×Matchpattern×MVars → MVars. Its operations are defined by the fol-
lowing equations:
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f = f ′

match(x1, mp1, bstvars1) 7→ bstvars2
. . .

match(xr, mpr, bstvars(r)) 7→ bstvars(r+1)

match( f (x1, . . . , xr), f ′(mp1, . . . , mpr), bstvars1) 7→ bstvars(r+1)

f 6= f ′

match( f (x1, . . . , xr), f ′(mp1, . . . , mpr), bstvars) 7→ ε

match(x1, mp1, bstvars1) 7→ bstvars2
match([x2, . . . , xr], [mp2, . . . , mpk], bstvars2) 7→ bstvars3

match([x1, x2, . . . , xr], [mp1, mp2, . . . , mpk], bstvars1) 7→ bstvars3

match(x, mp, bstvars1) 7→ bstvars2

match([x], [mp], bstvars1) 7→ bstvars2

match([x1, . . . , xr], mp, bstvars1) 7→ bstvars2

match([x1, . . . , xr], [mp], bstvars1) 7→ bstvars2

match([], [], bstvars) 7→ bstvars

c′ /∈ Σmvar
c = c′

match(c, c′, bstvars) 7→ bstvars

c′ /∈ Σmvar
c 6= c′

match(c, c′, bstvars) 7→ ε

c ∈ Σmvar
bstvars 6= ε

match(t, c, bstvars) 7→ add(bstvars, c, t)

c ∈ Σmvar
bstvars = ε

match(t, c, bstvars) 7→ ε

The Table 4.2 shows some examples of trees, match patterns and the resulting
symbol table. When a match fails the result is ε.
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Input Data MatchPattern bstvars

“a” “b” ε
“b” “b” 〈{}〉
a(“b”) a($x) 〈{$x 7→ “b”}〉
a(b(“c”), d(“e”)) a($x, d($y)) 〈{$x 7→ b(“c”), $y 7→ “e”}〉
[] [] 〈{}〉
[“a”] [$x, $y] 〈{$x 7→ “a”, $y 7→ []}〉
[“a”, “b”, “c”] [$x, $y] 〈{$x 7→ “a”, $y 7→ [“b”, “c”]}〉
[“a”, “b”] [$x, $y, []] 〈{$x 7→ “a”, $y 7→ “b”}〉

Table 4.2 Match pattern examples.

The match-replace placeholder can also be accompanied with an expression:

<: match Expr :>
<: Matchpattern =:> String
...
<: Matchpattern =:> String

<: end :>

This construction is an abbreviation for a combination of the match-replace
placeholder and subtemplates and can be rewritten to the following subtem-
plate call placeholder:

<: id( Expr ) :>

and subtemplate:

id[
<: match :>
<: Matchpattern =:> String
...
<: Matchpattern =:> String

<: end :>
],

where the value of id should be unique to prevent collisions with other
subtemplates, i.e. the value of id should be hygienic [74].

The match-replace is a quite verbose construction for some common operations
like substitution, iteration and conditional. The next presented placeholders are
abbreviations for the match-replace and are more intuitive for programmers
with an imperative background.
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4.3.5 Substitution

The substitution placeholder provides a one-to-one insertion of a leaf symbol of
the input data tree into the template. The syntax of the substitution placeholder
is:

<: Expr :>

The evaluator replaces the substitution placeholder by a string. The value of
this string is obtained by evaluating the Expr.

The informal operational semantics of this placeholder are straightforward.
The expression is evaluated, which must yield a string, otherwise an error
is generated. This result of the expression substitutes the placeholder in the
template.

Formally, the evaluation of the substitution placeholder can be written as
a combination of subtemplates and match-replace placeholders. Consider
Figure 4.2, the substitution placeholder is replaced by a subtemplate call
placeholder including its expression. This placeholder sets a new value for
the context meta-variable $$. It calls the subtemplate id, which iterates over
the list of characters in the string, and a string can indeed be mapped to a list
of characters. The subtemplate id′ is called per character, which maps every
character in the input data to a character in the object code. The number of
match-rules in this mapping is equal to the number of characters supported
by the string type of the input data. Note that the names of the subtemplates
id and id′ must be unique to ensure they do not conflict with other declared
subtemplates.

4.3.6 Conditional

The conditional placeholder selects a result string based on the result of a
condition. The syntax of the conditional placeholder is inspired by the if-then(-
else) construct that can be found in most imperative languages:

<: if Expr == Matchpattern then :>
String ( <: else :> String )?

<: fi :>

The if-then(-else) construct consists of an condition to select the result strings.
The condition contains an Expr and a Matchpattern. The Expr is used to
calculate a value from the input data. This result of the expression is matched
against the Matchpattern; when the match is successful the string of the then-
part is inserted. In case of an unsuccessful match the else-part is inserted,
or when this part is unspecified, nothing is inserted. The chosen string may
contain placeholders and is evaluated before inserting it in the template.
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<: Expr :>
⇒

<: id(Expr) :>
id[
<: match :>
<: [$mchar, $chars] =:>

<: id′($mchar) :><: id($chars) :>
<: [] =:>

<: end :>]

id′[
<: match :>
<: a =:> a
. . .
<: Z =:> Z

<: end :>]

Figure 4.2 Translation of substitution placeholder to match-replace and subtemplates.

The conditional placeholder can be rewritten to a match-replace placeholder.
The translation is defined by the mappings of Figure 4.3 and Figure 4.4. The first
mapping is the if-then-else, the second mapping is the if-then. At translation
of the if-then, the missing else-part must be defined in the match-replace
placeholder. Without this second rule for the empty result, the evaluation of
the match-replace placeholder will produce an error when the first match
pattern does not match. Since the if-then(-else) is rewritten to a match-replace
placeholder, it is possible to have meta-variables in the match pattern of the
conditional. During translation the match pattern is only used for the then-part,
as a result the meta-variables of that match pattern are only available in that
part. The else part uses the default match pattern $x, so $x is assigned to the
result of the expression in case the then part is selected.

4.3.7 Iteration

The iteration placeholder is an abbreviation for the match-replace placeholder
for handling lists. It contains an expression to select a list from the input
data and it contains a result string, which is instantiated for every element in
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<: if Expr == Matchpattern then :>
s1 <: else :> s2 <: fi :>

⇒
<: match Expr :>
<: Matchpattern =:> s1

<: $x =:> s2

<: end :>

Figure 4.3 Translation of if-the-else to match-replace.

<: if Expr == Matchpattern then :> s <: fi :>
⇒

<: match Expr :>
<: Matchpattern =:> s
<: $x =:>

<: end :>

Figure 4.4 Translation of if-then to match-replace.

the list. During iteration the current element is assigned to a user definable
meta-variable $IdCon in order to use it in the placeholders of the string. The
syntax of the iteration placeholder is:

<: foreach $IdCon in Expr do :>
String ( <: sep :> String )?

<: od :>

A separator can be defined in case of a separated list. The mapping of an
iteration placeholder to a match-replace placeholder is defined in Figure 4.5
and Figure 4.6. The meta-variable $IdCon contains the element of the iteration.
The meta-variable $tail is bound to the tail of the list and recursively invokes
the subtemplate id with this new context via a subtemplate call. The identifier
of the subtemplate id must be unique to remove possible conflicts. The first
translation, of Figure 4.5, is for non-separated lists and the second translation,
of Figure 4.6, is for separated lists. We need three match-rules to handle
the separator in a correct way in the second case. A separator must only be
inserted between two elements and is not allowed to terminate a list, which is
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<: foreach $IdCon in Expr do :> s <: od :>
⇒

id[<: match Expr :>
<: [] =:> ε

<: [$IdCon, $tail] =:> s <: id($tail) :>
<: end :>]

Figure 4.5 Translation of iteration placeholder to match-replace placeholder (non-separated
lists).

<: foreach $IdCon in Expr do :> s <: sep :> ssep <: od :>
⇒

id[<: match Expr :>
<: [] =:> ε

<: [$IdCon] =:> s
<: [$IdCon, $tail] =:> s ssep <: id($tail) :>

<: end :>]

Figure 4.6 Translation of iteration placeholder with separator to match-replace placeholder
(separated lists).

prevented by the second rule. Section 6.8 discusses why this extra rule becomes
superfluous in a syntax safe template evaluator.

4.3.8 Unparser Completeness

The presented metalanguage is intentionally minimalistic to prevent it for using
for computations other than rendering the view. Although the metalanguage
and its used tree pattern matching is minimalistic, the next theorem shows
that our metalanguage is unparser-complete:

Theorem 4.3.7. A metalanguage containing constructions for subtemplates
and match-replace placeholders is unparser-complete.

(proof) As shown in Lemma 3.4.2, the production rules of each context-free
grammar can be mapped on a grammar only containing rules of these forms:
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1. A→ ε{c}, where A ∈ N and A is the start symbol;

2. A→ s{c}, where A ∈ N and s ∈ Σ∗;

3. A→ εn1εn2ε{c}, where A, n1, n2 ∈ N.

We show one-by-one that for each of these three forms of production rules the
relation

L(Gast) = desugar(parse(unparse(L(Gast))))

holds for an implementation of the unparse function using templates.

First, consider the production rule A→ ε{c1}. The abstract syntax tree belong-
ing to this rule tast = c1. The template belonging to this production rule is:
tmp =

template[
<: match :>
<: c1 =:>
<: end :>
]

Evaluating the template using the abstract syntax tree tast results in

start(tmp, tast)⇒ ε.

Parsing this empty string produces the parse tree:

parse(ε)⇒< A, c1 > (ε).

Desugaring this parse tree produces the abstract syntax tree:

desugar(< A, c1 > (ε))⇒ c1.

Second, consider the production rule A → s{c2}. The abstract syntax tree
belonging to this rule tast = c2. The template belonging to this production rule
is: tmp =

template[
<: match :>
<: c2 =:> s
<: end :>
]

Evaluating the template using the abstract syntax tree tast results in

start(tmp, tast)⇒ s.
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Parsing the string s produces a parse tree

parse(s)⇒< A, c2 > (s).

Desugaring this parse tree produces the abstract syntax tree:

desugar(< A, c2 > (s))⇒ c2.

The last production rule is A→ εn1εn2ε{c3}. The abstract syntax tree belong-
ing to this rule tast = c3(t1, t2), where t1 and t2 are the abstract syntax trees
belonging to n1, respectively n2. The template belonging to this production
rule is: tmp =

template[
<: match :>
<: c3( $x1, $x2 ) =:> <: stmp1( $x1 ) :> <: stmp2( $x2 ) :>
<: end :>
]

Evaluating the template using the abstract syntax tree tast results in

start(tmp, tast)⇒ s1 · s2,

where s1 is the result of evaluating the subtemplate stmp1 with the input data
tree bound to $x1, and s2 is the result of evaluating the subtemplate stmp2 with
the input data tree bound to $x2. Parsing the string s1 · s2 produces a parse tree
parse(s1 · s2) ⇒< A, c > (t′1, t′2), where t′1 and t′2 are sub parse trees with top
nonterminal n1 respectively n2. The abstract syntax tree is desugar(< A, c3 >
(t′1, t′2)) ⇒ c3(t1, t2), where t1 = desugar(t′1) and t2 = desugar(t′2), which is
equal to the original abstract syntax tree.

Theorem 4.3.7 shows that not every feature of our metalanguage is necessary to
fulfill the requirements to have an unparser-complete metalanguage. First the
stack of meta-variables supporting blocks is superfluous when implementing
an unparser, since meta-variables are only used in the scope of a match-replace
placeholder. However, to use templates for real world code generation scenarios
(see case studies of Chapter 7) referring to earlier assigned meta-variables is
commonly used, if only just for identifiers based on multiple labels in the
input data tree. An example is generating a get function with the name of
the class and field: getNaturalValue, where Natural is the class name and
Value the field name. The availability of a block-structured stack where earlier
assigned meta-variables can be referred limits the size of the input data. It is
used to combine information from different nodes stored on different levels
in the input data tree. Since the evaluation of a template is top-down, the
meta-variables on the stack can only contain information from parent nodes
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in the input data tree, since the meta-variables assigned in inner blocks are
removed when stepping back to outer blocks.

Second for implementing the unparser only expressions supporting meta-
variable lookups is necessary, the other operations are for convenience during
implementing code generators.

4.4 Example: The PICO Unparser

This section discusses an unparser for the PICO language, see Section 2.6.1,
implemented using templates. This unparser implementation shows the ap-
plication of the subtemplates, match-replace placeholders and substitution
placeholders.

The unparser consists of the start template template and a subtemplate for
each nonterminal used as result symbol of a context-free production rule. The
subtemplates are necessary to handle the list structures of the declarations
and statements, and the recursive structure of the statements and expressions.
They contain a match-replace placeholder to match on the subtree of the
abstract syntax belonging to the nonterminal of the sentences the match-
replace placeholder instantiates. The number of match-rules of the match-
replace placeholders is equal to the number of alternatives belonging to these
nonterminals.

This template of Figure 4.7 is an implementation of an PICO unparser and re-
constructs the concrete syntax for an abstract syntax tree of PICO. An example
of such an abstract syntax tree of a PICO program is shown in Figure 2.3. It
is obtained by parsing and desugaring the PICO program of Figure 2.1. This
abstract syntax tree can be used as input data for the template to obtain a
concrete syntax representation of the PICO program. The layout is not literally
restored, since layout information is missing in the abstract syntax tree. The
template evaluator uses the layout as it is defined in the template.

4.5 Related Template Systems

Our metalanguage is based on the assumption that a regular tree is used as
input data and the resulting text is context-free language. In this section we
discuss the metalanguage of some other template systems. We selected three
industrially used template evaluators (ERb [58], JSP [12, 100], and Velocity2)
and an evaluator discussed in the academic literature (StringTemplate [92]).
The selection is based on availability of a working template evaluator and to
show different metalanguages.

2 http://velocity.apache.org (accessed on November 30, 2010)

http://velocity.apache.org
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1 template [
2 <: match : >
3 <: program ( de c l s ( $dec l s ) , $stms ) =: >
4 begin de c lare
5 <: de c l s ( $dec l s ) : > ;
6 <: stms ( $stms ) : >
7 end
8 <: end : >
9 ]

10

11 dec l s [
12 <: match : >
13 <: [ ] =: >
14 <: [ $head ] =: > <: idtype ( $head ) : >
15 <: [ $head , $ t a i l ] =: > <: idtype ( $head ) : > , <: dec l s ( $ t a i l ) : >
16 <: end : >
17 ]
18

19 stms [
20 <: match : >
21 <: [ ] =: >
22 <: [ $head ] =: > <: stm ( $head ) : >
23 <: [ $head , $ t a i l ] =: > <: stm ( $head ) : > ; <: stms ( $ t a i l ) : >
24 <: end : >
25 ]
26

27 stm [
28 <: match : >
29 <: assignment ( $id , $expr ) =: >
30 <: $id : > := <: expr ( $expr ) : >
31 <: while ( $expr , $stms ) =: > while <: expr ( $expr ) : > do
32 <: stms ( $stms ) : > od
33 <: i f ( $expr , $thenstms , $e lses tms ) =: > i f <: expr ( $expr ) : >
34 then <: stms ( $thenstms ) : > e l s e <: stms ( $e lses tms ) : > f i
35 <: end : >
36 ]
37

38 expr [
39 <: match : >
40 <: natcon ( $natcon ) =: > <: $natcon : >
41 <: s t r c o n ( $s t rcon ) =: > " <: $s t rcon : > "
42 <: id ( $id ) =: > <: $id : >
43 <: sub ( $lhs , $rhs ) =: > <: expr ( $ lhs ) : > − <: expr ( $rhs ) : >
44 <: concat ( $lhs , $rhs ) =: >
45 <: expr ( $ lhs ) : > || <: expr ( $rhs ) : >
46 <: add ( $lhs , $rhs ) =: > <: expr ( $ lhs ) : > + <: expr ( $rhs ) : >
47 <: end : >
48 ]
49

50 idtype [
51 <: match : >
52 <: dec l ( $id , $type ) =: > <: $id : > : <: type ( $type ) : >
53 <: end : >
54 ]
55

56 type [
57 <: match : >
58 <: n a t ura l =: > nat ura l
59 <: s t r i n g =: > s t r i n g
60 <: end : >
61 ]

Figure 4.7 PICO unparser based on templates.
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A metalanguage can be minimalistic, for example only using placeholders
containing reference labels. The template evaluator replaces a placeholder with
the referred label with a piece of data instead that the placeholder describes
an expression. Next to a minimalistic programming language, a language, like
Ruby or Java, can be used as metalanguage. Template systems using a rich
metalanguage are ERb [58], JSP [12, 100], and Velocity3. Furthermore there
are systems, like StringTemplate [92], which provide a metalanguage that is
somewhere between the label approach and a Turing-complete metalanguage.

We will discuss in the next sections the industrial template evaluators ERb,
JSP, and Velocity. They are designed to generate HTML in web applications,
although Herrington uses ERb to generate code in a model driven engineering
approach [58]. The last discussed template evaluator, StringTemplate, is an
academic approach. StringTemplate finds its origin in the application as a
template evaluator for a dynamic website4. It is used to investigate template
evaluators and metalanguage features. For each of these template evaluators
we show an implementation of the PICO unparser. In Section 4.5.5 we give
a brief evaluation of the differences and similarities between the different
metalanguages.

4.5.1 ERb

ERb, discussed in [58], is a text template interpreter for the programming
language Ruby5. ERb introduces special syntax constructs to embed Ruby code
in a text file. The metalanguage of ERb is Ruby and thus Turing-complete, as a
result there is no restriction on the code ERb can generate.

The first main construct is <%= Ruby expression %>. Its behavior is similar to
our substitution placeholder. The Ruby expression is evaluated and the result
is emitted to the output. An example of this construct is:
Hello <%= "Jack" %> which yields Hello Jack after evaluation.

The second main construct is <% Ruby code %>, which embeds Ruby code in a
template. The code is executed, but output text is only emitted in the generated
text when print statements are used inside the Ruby code. Ruby statements
can span multiple placeholders, so it is possible to use the conditional and
iteration statement provided by the Ruby language. This approach to embed
Ruby in a template is very flexible. When a new language construct is added
to Ruby, it can immediately be used in an ERb template, because ERb does not
have any assumptions about the metalanguage, except that it must be Ruby.

An example of an ERb template is presented in Figure 4.8. The first placeholder
initializes the array names. The second placeholder and the last placeholder

3 http://velocity.apache.org (accessed on November 30, 2010)
4 http://www.jguru.com (Accessed on November 30, 2010)
5 http://www.ruby-lang.org (accessed on November 30, 2010)

http://velocity.apache.org
http://www.jguru.com
http://www.ruby-lang.org
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<%
names = []
names.push({ ’first’ => "Jack", ’last’ => "Herrington" })
names.push({ ’first’ => "Lori", ’last’ => "Herrington" })
names.push({ ’first’ => "Megan", ’last’ => "Herrington" })
%>
<% names.each { |name| %>
Hello <%= name[ ’first’ ] %> <%= name[ ’last’ ] %>
<% } %>

Figure 4.8 ERb example.

are an iteration formed by the Ruby iterator .each. The template text between
those placeholders is emitted for each element in the array names. The same
construction of placeholders can also be used for if statements and other Ruby
language constructs.

Figure 4.9 shows our implementation of the PICO unparser using ERb. The
abstract syntax trees of PICO represented as ATerms are mapped one-to-one to
an XML representation, such that it can be queried using XPath. The unparser
is grouped in three subtemplates: root, statements and expr. The root is the
starting point of the unparser. At lines 4-9 it generates the variable declarations.
Typical for the ERb implementation is the deletion of the quote-sign (") in
the query result at line 6, since the XML queries return strings surrounded
by quotes. The separator handling using an if statement to check for the last
element at line 8 is also typical for the ERb implementation.

ERb offers Ruby as metalanguage, but the way Ruby is embedded in ERb
results in a limitation of the use of Ruby. Variables in ERb are global accessible
and writable in all (sub)templates, which makes out of the box recursive
evaluation impossible since earlier assigned variables with the same name in a
calling template are overwritten. This is an important difference comparing to
our evaluation strategy and metalanguage.

It is obligatory to support recursive template evaluation with scoped variables
to have an unparser-complete template evaluator. Since Ruby is offered as
metalanguage we solved the problem of global variables in ERb using an ex-
plicit stack mechanism in the templates. Consider the statements subtemplate,
it iterates (line 16) over a list of statements provided by the caller. First it checks
if the iterator is in the last cycle at line 17 and pushes the boolean result of the
check on the stack. For correct separator handling, this value is popped and
used to generate a separator at line 41.

Lines 18–40 contain a case-switch, similar to our match-replace placeholder.
It checks the kind of the statement node in the input data to select the corre-
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1 root . erb :
2 begin
3 dec l are
4 <% de c l s = input_data . xpath ( ’//program/dec l s/ l i s t /decl ’ ) ;
5 dec l s . each { |decl| %>
6 <%= decl . xpath ( ’ value ’ ) . t e x t . gsub(/\ " / , ’ ’ ) %>:
7 <%= decl . xpath ( ’ ∗ [ 2 ] ’ ) . l a s t . name %>
8 <% i f dec l != de c l s . l a s t %>,<% end %>
9 <% } %>;

10 <% las t _s tm = n i l %>
11 <% statements = input_data . xpath ( ’// program/ l i s t /∗ ’ ) %>
12 <%= subtemplate ( " s ta tements . erb " , binding)%>
13 end
14

15 s tatements . erb :
16 <% statements . each { |stm| %>
17 <% stack . push stm != statements . l a s t %>
18 <% case stm . node_name when " assignment " then %>
19 <%= stm . xpath ( ’ value ’ ) . t e x t . gsub (/\"/ , ’ ’ ) %> :=
20 <% expr = stm . xpath ( ’ ∗ [ 2 ] ’ ) ;
21 p r i n t subtemplate ( " expr . erb " , binding ) %>
22 <% when " while " then %> while
23 <% expr = stm . xpath ( ’ ∗ [ 1 ] ’ ) ;
24 p r i n t subtemplate ( " expr . erb " , binding ) %> do
25 <% stack . push statements %>
26 <% statements = stm . xpath ( ’∗ [ 2 ] /∗ ’ ) ; %>
27 <%= subtemplate ( " s ta tements . erb " , binding ) %>
28 <% statements = s tack . pop %> od
29 <% when " i f " then %> i f <% expr = stm . xpath ( ’ ∗ [ 1 ] ’ ) ;
30 p r i n t subtemplate ( " expr . erb " , binding ) %> then
31 <% stack . push statements %>
32 <% statements = stm . xpath ( ’∗ [ 2 ] /∗ ’ ) ; %>
33 <% statements2 = stm . xpath ( ’∗ [ 3 ] /∗ ’ ) ; %>
34 <% stack . push statements2 %>
35 <%= subtemplate ( " s ta tements . erb " , binding ) %>
36 e l s e
37 <% statements = s tack . pop %>
38 <%= subtemplate ( " s ta tements . erb " , binding ) %>
39 <% statements = s tack . pop %> f i
40 <% end %>
41 <% i f s tack . pop then %>;<% end %>
42 <% } %>
43

44 expr . erb :
45 <% case expr . f i r s t . name
46 when " natcon " then %> <%= expr . xpath ( ’ value ’ ) . t e x t %>
47 <% when " s t r c o n " then %> <%= expr . xpath ( ’ value ’ ) . t e x t %>
48 <% when " id " then %> <%= expr . xpath ( ’ value ’ ) . t e x t . gsub (/\"/ , ’ ’ ) %>
49 <% when " sub " then %> <% expr l = expr . xpath ( ’ ∗ [ 1 ] ’ ) ;
50 s tack . push expr . xpath ( ’ ∗ [ 2 ] ’ ) ; expr = expr l ;
51 p r i n t subtemplate ( " expr . erb " , binding ) %> −
52 <% expr = s tack . pop ; p r i n t subtemplate ( " expr . erb " , binding ) %>
53 <% when " concat " then %> <% expr l = expr . xpath ( ’ ∗ [ 1 ] ’ ) ;
54 s tack . push expr . xpath ( ’ ∗ [ 2 ] ’ ) ; expr = expr l ;
55 p r i n t subtemplate ( " expr . erb " , binding ) %> ||
56 <% expr = s tack . pop ; p r i n t subtemplate ( " expr . erb " , binding ) %>
57 <% when " add " then %> <% expr l = expr . xpath ( ’ ∗ [ 1 ] ’ ) ;
58 s tack . push expr . xpath ( ’ ∗ [ 2 ] ’ ) ; expr = expr l ;
59 p r i n t subtemplate ( " expr . erb " , binding ) %> +
60 <% expr = s tack . pop ; p r i n t subtemplate ( " expr . erb " , binding ) %>
61 <% end %>

Figure 4.9 PICO unparser implemented using ERb.
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sponding concrete syntax. The if statement and while statement recursively
contains statements and need to recall the statements subtemplate. When
the statements subtemplate is recursively called, the variable statements is
pushed on the stack and a new value is assigned to the variable. For example
the while at line 22-28, the content of the variable statements is pushed at
line 25, a new value is assigned to the variable at line 26 and the subtemplate
is called at line 27, finally the original value of the statements variable is
reassigned to it at line 28. The subtemplate expr for generating expressions
works in a similar way.

4.5.2 Java Server Pages

Java Server Pages (JSP) [12, 100] is a template based system developed by Sun
Microsystems. It is designed for generating dynamic web pages and XML
messages in Java-based enterprise systems, where the evaluation is tuned
for performance. The aim of JSP is to provide separation between the object
code and the content generation. The complete Java language is available as
metalanguage in JSP pages.

Evaluating a JSP page goes through two phases: a translation phase and a
request phase. In a web environment a page is requested via a client. The
translation phase is done once per page at the first request. The JSP compiler
translates the JSP page to a Java servlet class where all object code is em-
bedded in println(...) statements, a kind of a printf-based code generator
(Section 1.5.2). This servlet class is instantiated to answer requests to generate
the output code, i.e. HTML.

JSP provides two levels of instructions: JSP directives and JSP scripting elements.
JSP directives provide information for the translation phase that is independent
of any specific request. The scripting elements are the instructions which
are executed at every request of the servlet. These scripting elements are
comparable to our placeholders.

JSP directives provide global information for instructing the JSP Compiler for
creating the servlet class. They have the following syntax:

<%@ directive { attr="value" }* %>.

Table 4.3 shows the standard directives. Lines 2-5 of Figure 4.10 contain di-
rectives to define the basic page settings for the JSP implementation of the
PICO unparser. JSP supports tag libraries, Java classes containing functionality,
which can be called from a JSP page. In Figure 4.10, we import tag libraries for
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Element Description

<%@ page ... %> Defines page-dependent attributes, such as session
tracking, error page, and buffering requirements.

<%@ include ... %> Includes a file during the translation phase.
<%@ taglib ... %> Declares a tag library, containing custom actions,

that is used in the page.

Table 4.3 JSP Directives.

Element Description

<% ... %> Scriptlet, used to embed Java scripting code.
<%= ... %> Expression, used to embed scripting code expressions when

the result shall be added to the output code.
<%! ... %> Declaration, used to declare variables and methods

in the servlet body of the JSP page implementation class.

Table 4.4 JSP Scripting Elements.

XML querying6, string manipulation functions7 and core functions8.

JSP provides three types of scripting elements, see Table 4.4. The first two are
equivalent to the ERb placeholders; one for embedding Java code in a JSP page
and one to define expressions, where the output is directly emitted in the result.
The third type of placeholder is used to declare variables and methods that
get inserted into the main body of the servlet class. It can be used to declare
methods, to be called from the template and to specify fields for storing global
information independent of single request.

The JSP PICO unparser is shown in Figure 4.10. We discusses the differences
with our approach of Section 4.4. First, iteration is supported by a foreach
statement, as shown at lines 10-16. It generates a list of declarations, separated
by a comma. The list separator handling is implemented by a check at line
15, which does not generate a comma at the last cycle of the iteration. The
other difference is the variable scopes supported by JSP. In contrast with our
metalanguage, JSP does not support a stack where variables are pushed and
popped. The requirement for the stack is that variables must be passed to a
called (sub)template and variables in the scope of the calling (sub)template
should not be overwritten in the called (sub)template. In case of recursion this

6 http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/x/tld-summary.html (accessed on
November 30, 2010)
7 http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/fn/tld-summary.html (accessed on
November 30, 2010)
8 http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/c/tld-summary.html (accessed on
November 30, 2010)

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/x/tld-summary.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/x/tld-summary.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/fn/tld-summary.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/fn/tld-summary.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/c/tld-summary.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/c/tld-summary.html
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easily happens, when the (sub)template calls itself, the same variable names
are used. For example in the Expr.jsp subtemplate defined at lines 65-104

of Figure 4.10. JSP offers a scoping mechanism for variables, where we use
the page scope and request scope. The variables in the page scope are only
available in the page itself and not in a called (sub)template, while variables in
the request scope are also available in the called (sub)templates. An example
is shown at lines 81-83. Values extracted from the input data are stored in
variables in the page scope, lines 81-82, otherwise they are overwritten by the
recursively called (sub)template. Since page scoped variables are not passed to
a called (sub)template, they are assigned to a request scoped variable before
calling the (sub)template, see lines 83-85.
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1 pico . j s p :
2 <%@ page language=" java " contentType=" t e x t /pla in "%>
3 <%@ t a g l i b p r e f i x =" c " u r i=" ht tp :// java . sun . com/ j s p / j s t l /core " %>
4 <%@ t a g l i b p r e f i x =" x " u r i=" ht tp :// java . sun . com/ j s p / j s t l /xml " %>
5 <%@ t a g l i b p r e f i x =" fn " u r i=" ht tp :// java . sun . com/ j s p / j s t l / f u n c t i o n s " %>
6 <c : import u r l=" input . xml " var=" u r l " />
7 <x : parse xml=" $ { u r l } " var=" input " />
8 begin
9 dec l are

10 <x : forEach var=" dec l " varS ta tus=" s t a t u s "
11 s e l e c t =" $input/program/dec l s/ l i s t /decl ">
12 <x : s e t var=" i d e n t i f i e r " s e l e c t =" s t r i n g ( $decl/value ) "
13 scope=" page "/>$ { fn : r e p l a c e ( i d e n t i f i e r , " \" " , " " ) } :
14 <x : out s e l e c t ="name( $decl /∗ [ 2 ] ) " />
15 <c : i f t e s t =" $ { s t a t u s . l a s t == ’ f a l s e ’ } " >,</c : i f >
16 </x : forEach >;
17 <x : s e t var=" statements " s e l e c t =" $input/program/ l i s t "
18 scope=" request "/>
19 < j s p : inc lude page=" statements . j s p "/>
20

21 end
22

23 s tatements . j s p :
24 <%@ t a g l i b p r e f i x =" c " u r i=" ht tp :// java . sun . com/ j s p / j s t l /core " %>
25 <%@ t a g l i b p r e f i x =" x " u r i=" ht tp :// java . sun . com/ j s p / j s t l /xml " %>
26 <%@ t a g l i b p r e f i x =" fn " u r i=" ht tp :// java . sun . com/ j s p / j s t l / f u n c t i o n s " %>
27

28 <x : forEach var=" stm " varS ta tus=" s t a t u s " s e l e c t =" $statements/∗ ">
29 <x : choose >
30 <x : when s e l e c t ="name( $stm )=\" assignment \" " >
31 <x : s e t var=" i d e n t i f i e r " s e l e c t =" s t r i n g ( $stm/value ) "
32 scope=" page "/>$ { fn : r e p l a c e ( i d e n t i f i e r , " \" " , " " ) }
33 := <x : s e t var=" expr " s e l e c t =" $stm /∗ [2 ] "
34 scope=" request "/>< j s p : inc lude page=" expr . j s p "/>
35 </x : when>
36

37 <x : when s e l e c t ="name( $stm )=\" while \" ">
38 while <x : s e t var=" expr " s e l e c t =" $stm /∗ [1 ] "
39 scope=" request "/>< j s p : inc lude page=" expr . j s p "/> do
40 <x : s e t var=" statements " s e l e c t =" $stm /∗ [2 ] "
41 scope=" request "/>
42 < j s p : inc lude page=" statements . j s p "/>
43 od
44 </x : when>

Figure 4.10 PICO abstract syntax tree unparser in JSP.(to be continued)
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45 <x : when s e l e c t ="name( $stm )=\" i f \" ">
46 i f <x : s e t var=" expr " s e l e c t =" $stm /∗ [1 ] " scope=" request "/>
47 < j s p : inc lude page=" expr . j s p "/>then
48 <x : s e t var=" statements1 " s e l e c t =" $stm /∗ [2 ] "
49 scope=" page "/><x : s e t var=" statements2 "
50 s e l e c t =" $stm /∗ [3 ] " scope=" page "/>
51 <c : s e t var=" statements " value=" $ { s tatements1 } "
52 scope=" request " />
53 < j s p : inc lude page=" statements . j s p "/>
54 e l s e
55 <c : s e t var=" statements " value=" $ { s tatements2 } "
56 scope=" request " />
57 < j s p : inc lude page=" statements . j s p "/>
58 f i
59 </x : when>
60 </x : choose >
61 <c : i f t e s t =" $ { s t a t u s . l a s t == ’ f a l s e ’ } " >;</c : i f >
62 </x : forEach >
63

64 expr . j s p :
65 <%@ t a g l i b p r e f i x =" c " u r i=" ht tp :// java . sun . com/ j s p / j s t l /core " %>
66 <%@ t a g l i b p r e f i x =" x " u r i=" ht tp :// java . sun . com/ j s p / j s t l /xml " %>
67 <%@ t a g l i b p r e f i x =" fn " u r i=" ht tp :// java . sun . com/ j s p / j s t l / f u n c t i o n s " %>
68 <x : choose >
69 <x : when s e l e c t ="name( $expr )=\" natcon \" " >
70 <x : out s e l e c t =" $expr /∗ [1 ] "/>
71 </x : when>
72 <x : when s e l e c t ="name( $expr )=\" s t r c o n \" " >
73 <x : out s e l e c t =" $expr /∗ [1 ] "/>
74 </x : when>
75 <x : when s e l e c t ="name( $expr )=\" id \" " >
76 <x : s e t var=" i d e n t i f i e r " s e l e c t =" s t r i n g ( $expr /∗ [ 1 ] ) "
77 scope=" page "/>
78 $ { fn : r e p l a c e ( i d e n t i f i e r , " \" " , " " ) }
79 </x : when>
80 <x : when s e l e c t ="name( $expr )=\" sub \" " >
81 <x : s e t var=" expr l " s e l e c t =" $expr /∗ [1 ] " scope=" page "/>
82 <x : s e t var=" exprr " s e l e c t =" $expr /∗ [2 ] " scope=" page "/>
83 <c : s e t var=" expr " value=" $ { expr l } " scope=" request " />
84 < j s p : inc lude page=" expr . j s p "/> − <c : s e t var=" expr "
85 value=" $ { exprr } " scope=" request " />
86 < j s p : inc lude page=" expr . j s p "/>
87 </x : when>
88 <x : when s e l e c t ="name( $expr )=\" concat \" " >
89 <x : s e t var=" expr l " s e l e c t =" $expr /∗ [1 ] " scope=" page "/>
90 <x : s e t var=" exprr " s e l e c t =" $expr /∗ [2 ] " scope=" page "/>
91 <c : s e t var=" expr " value=" $ { expr l } " scope=" request " />
92 < j s p : inc lude page=" expr . j s p "/> || <c : s e t var=" expr "
93 value=" $ { exprr } " scope=" request " />
94 < j s p : inc lude page=" expr . j s p "/>
95 </x : when>
96 <x : when s e l e c t ="name( $expr )=\"add\" " >
97 <x : s e t var=" expr l " s e l e c t =" $expr /∗ [1 ] " scope=" page "/>
98 <x : s e t var=" exprr " s e l e c t =" $expr /∗ [2 ] " scope=" page "/>
99 <c : s e t var=" expr " value=" $ { expr l } " scope=" request " />

100 < j s p : inc lude page=" expr . j s p "/> + <c : s e t var=" expr "
101 value=" $ { exprr } " scope=" request " />
102 < j s p : inc lude page=" expr . j s p "/>
103 </x : when>
104 </x : choose >

Figure 4.11 PICO abstract syntax tree unparser in JSP.(continued)
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Statement Description

#set Assigns a value to a variable.
#if( Expression )... Selects a text based on the result of the expression.
#elseif( Expression )
...#else...#end
#foreach( Expression )...#end Iterates over a list returned by the expression and

instantiates the text for each element in the list.
#literal()...#end Disables the evaluator for a section.
#include( filename ) Includes the file named filename

without interpretation of meta code.
#parse( filename) Includes the file named filename

with interpretation of meta code.
#stop Stops of the evaluator.
#evaluate Evaluates a string containing meta code.
#define Assigns a block of VTL to a reference.
#macro Defines a repeated segment of a VTL template.

Table 4.5 VTL Statements.

4.5.3 Velocity

Velocity9 is a template evaluator for Java. It provides a basic template metalan-
guage to reference Java objects, called Velocity Template Language. Velocity is
text-based and has no assumptions on the language of the code it generates.
The aim of Velocity is to separate the presentation tier and the business tier,
according to the model-view-controller (MVC) architecture in web applica-
tions. The metalanguage of Velocity supports complex computations, since it
is possible to assign variables and write expressions.

A few metalanguage instructions and an example of a Velocity template are
already discussed in Section 1.5.4. The Velocity Template Language (VTL) has
two core notations: object references written as a $ followed by its variable
name, and statements starting with a # followed by the instruction. The object
references can be directly used similar to the substitution placeholder or as
variables in the statements. The VTL statements are shown in Table 4.5.

The Velocity PICO unparser is shown in Figure 4.12. Velocity provides internal
handling of XML data and the metalanguage is able to express the unparser in
a compact definition. The difference between the Velocity PICO unparser and
the implementation based using our metalanguage is the use of the foreach
statement and if. However, Velocity has the same problem with the variable
scopes as JSP. As a consequence temporary variables are necessary when a
subtemplate is recursively called multiple times, for example at lines 48-49.

9 http://velocity.apache.org (accessed on November 30, 2010)

http://velocity.apache.org
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1 begin
2 dec l are
3 # foreach ( $decl in
4 $root . getRootElement ( ) . getChild ( " dec l s " )
5 . getChild ( " l i s t " ) . getChi ldren ( ) )
6 $decl . getChild ( " value " ) . getText ( ) . r e p l a c e ( ’ " ’ , ’ ’ ) :
7 $decl . getChi ldren ( ) . get ( 1 ) . getName ( )
8 # i f ( $velocityHasNext ) , # end
9 #end ;

10 # s e t ( $statements = $root . getRootElement ( ) . getChild ( " l i s t " ) )
11 # statements ( $statements )
12 end
13

14 #macro ( s tatements $statements )
15 # foreach ( $stm in $statements . getChildren ( ) )
16 # i f ( $stm . getName ( ) == " assignment " )
17 $stm . getChild ( " value " ) . getText ( ) . r e p l a c e ( ’ " ’ , ’ ’ ) :=
18 # s e t ( $expr = $stm . getChildren ( ) . get ( 1 ) )# expr ( $expr )
19 # e l s e i f ( $stm . getName ( ) == " while " )
20 while # s e t ( $expr = $stm . getChildren ( ) . get ( 0 ) )
21 # expr ( $expr ) do # s e t ( $statements =
22 $stm . getChildren ( ) . get ( 1 ) ) # s tatements ( $statements )
23 od
24 # e l s e i f ( $stm . getName ( ) == " i f " )
25 # s e t ( $stms1 = $stm . getChildren ( ) . get ( 1 ) )
26 # s e t ( $stms2 = $stm . getChildren ( ) . get ( 2 ) )
27 i f # s e t ( $expr = $stm . getChildren ( ) . get ( 0 ) )
28 # expr ( $expr ) then
29 # s e t ( $statements = $stms1 )# s tatements ( $statements )
30 e l s e
31 # s e t ( $statements = $stms2 )# s tatements ( $statements )
32 f i
33 #end
34 # i f ( $velocityHasNext ) ; # end
35

36 #end
37 #end
38

39

40 #macro ( expr $expr )
41 # i f ( $expr . getName ( ) == " natcon " )
42 $expr . getValue ( )
43 # e l s e i f ( $expr . getName ( ) == " s t r c o n " )
44 $expr . getValue ( )
45 # e l s e i f ( $expr . getName ( ) == " id " )
46 $expr . getValue ( ) . r e p l a c e ( ’ " ’ , ’ ’ )
47 # e l s e i f ( $expr . getName ( ) == " sub " )
48 # s e t ( $expr l = $expr . getChildren ( ) . get ( 0 ) )
49 # s e t ( $exprr = $expr . getChildren ( ) . get ( 1 ) )
50 # expr ( $expr l )−#expr ( $exprr )
51 # e l s e i f ( $expr . getName ( ) == " concat " )
52 # s e t ( $expr l = $expr . getChildren ( ) . get ( 0 ) )
53 # s e t ( $exprr = $expr . getChildren ( ) . get ( 1 ) )
54 # expr ( $expr l )||# expr ( $exprr )
55 # e l s e i f ( $expr . getName ( ) == " add " )
56 # s e t ( $expr l = $expr . getChildren ( ) . get ( 0 ) )
57 # s e t ( $exprr = $expr . getChildren ( ) . get ( 1 ) )
58 # expr ( $expr l )+# expr ( $exprr )
59 #end
60 #end

Figure 4.12 PICO abstract syntax tree unparser in Velocity.
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Statement Description

$attribute$ Attribute references. For example: $user.name$.
$if(attribute)$subtemplate Conditional template inclusion. For example:
$else$subtemplate2$endif$ $if(attr)$<title>$attr$</title>$endif$.
$template(argument-list)$ (Recursive) template references.

For example: $item()$.
attribute:{anonymous-template} Template application to a multi-valued attributes,

i.e. iteration.
For example: $users:{<tr><td>$it.name$</td><td>
$it.age$</td></tr>}.

Table 4.6 StringTemplate statements.

4.5.4 StringTemplate

StringTemplate [92] is a text template system designed to enforce strict separa-
tion of model and view in a model-view-controller architecture. The developers
of StringTemplate have designed it via an evolution process starting from a
simple “document with holes" to a sophisticated template evaluator. This sepa-
ration of model and view is achieved by enforcing that the view cannot modify
the model or perform calculations based on data from the model. Therefore, in
comparison to JSP or ERb, the design of StringTemplate is optimized for en-
forcement of separation, not for Turing completeness, nor amazingly-expressive
“one-liners” [92].

This limited metalanguage enforces a template developer to exclude any cal-
culations in the template and enforces to only consider the output code. It
supports attribute references, subtemplates, implicit for-loops and if con-
structs. The authors of StringTemplate distilled four important metalanguage
constructs, shown in Table 4.6.

This set of constructs is, in their experience, powerful enough to specify
templates for complex dynamic websites and they use StringTemplate for
www.jguru.com10. An interesting similarity with grammars is discovered. The
analogy with grammars is that (sub)templates are production rules and the
attribute references are the terminals. The result of this observation is that the
explicit for-loop construction is not necessary to generate lists. Instead of a for-
loop, a kind of regular expression notation can be used, like $names:item()$,
where the subtemplate item() is invoked for every element of the list names.
Although the notation is shorter, the behavior is equal to an iteration place-
holder.

Figure 4.13 shows the PICO unparser specified in StringTemplate. The compact
notation for the iterator results in a short definition of the unparser when
compared to the lines of code of the other unparser specifications. The handling
of the input data in StringTemplate is not as flexible as the other systems.

10 accessed on November 30, 2010

file:www.jguru.com
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StringTemplate uses a Java Map structure as input data, which we instantiate
via a JavaScript Object Notation (JSON)11[35] of our abstract syntax tree. JSON
trees differ from the trees used in this thesis. JSON nodes are a representation
of JavaScript objects with fields, such fields do not have an index and are only
accessible via their labels. Fortunately, JSON supports ordered lists and as a
workaround we emulate the ordered trees by pushing the children of a node
into a list. Consider an ATerm of the form f (t1, . . . , tr), which is translated to a
JSON node of the form {“ f ” : [t1, . . . , tr]}, where the branches are stored in an
ordered list, which can be queried using the location of an element. When ti is
a list, the translation will result in a nesting of listings, which cannot be queried
by the mechanism of StringTemplate.s Therefore, we translate an ATerm ti
to {“list” : ti}, when ti is a list. Alternatively we could use index labels for
the branches, for example f (t1, . . . , tr) to {“ f ” : {“one” : t1}, . . . , {“r” : tr}}.
The last translation is mapping the keyword if in the abstract syntax tree to
when, since if is a keyword in StringTemplate and thus not allowed as label
reference.

Furthermore, StringTemplate does not allow to obtain an element of a list
based on its index, but provides standard list functions first, last and rest.
first returns the first element, last the last element of the list and rest the
original list without the first element. We use the first and last functions to
directly request an element of the list when possible, for the other arguments
we obtain them using the rest function. If we need the element at index
k, where k > 1, we apply the rest function k − 1 times and take the first
element of the last rest call: first(rest( ... rest( list ) ... )). Line
23 of Figure 4.13 shows this approach.

4.5.5 Evaluation

We presented the PICO unparser implemented in ERb, JSP, Velocity and
StringTemplate. We discussed the notable differences and similarities.

StringTemplate and our metalanguage do not allow manipulation of data,
and as a result calculations cannot be expressed. The metalanguages of the
industrial approaches, ERb, JSP and Velocity, are Turing complete. A Turing
complete metalanguage allows manipulating of data and storing of data. This
is unnecessary to implement an unparser and can only lead to undesired
programming in templates. Programming in templates can result in undesired
tangling of concerns [62].

Although the metalanguages of the three industrial approaches are Turing
complete, these systems share the same problem. They support recursion, but
the assigned meta-variables are by default globally available instead of scoped
for the block where they are defined. We used some workarounds to enable

11 http://www.json.org

http://www.json.org
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1 picounparser . s t :
2 begin
3 dec l are
4 $ f i r s t ( program ) . de c l s : dec l ( ) ; separa tor=" , " $ ;
5 $ l a s t ( program ) . l i s t : s ta tements ( ) ; separa tor=" ; " $
6 end
7

8 decl . s t :
9 $ f i r s t ( i t . dec l ) . value$ : $ l a s t ( i t . dec l ) . keys$

10

11 s tatements . s t :
12 $ i f ( i t . assignment ) $
13

14 $ f i r s t ( i t . assignment ) . value$ :=
15 $expr ( expr= l a s t ( i t . assignment ) ) $
16 $ e l s e i f ( i t . while ) $
17

18 while $expr ( expr= f i r s t ( i t . while ) ) $ do
19 $ l a s t ( i t . while ) . l i s t : s ta tements ( ) ; separa tor=" ; " $
20 od
21 $ e l s e $
22 i f $expr ( expr= f i r s t ( i t . when ) ) $ then
23 $ f i r s t ( r e s t ( i t . when ) ) . l i s t : s ta tements ( ) ; separa tor=" ; " $
24 e l s e
25 $ l a s t ( i t . when ) . l i s t : s ta tements ( ) ; separa tor=" ; " $
26 f i
27 $endif$
28

29 expr . s t :
30 $ i f ( expr . natcon ) $
31 $expr . natcon$
32 $ e l s e i f ( expr . s t r c o n ) $
33 " $expr . s t rcon$ "
34 $ e l s e i f ( expr . id ) $
35 $expr . id$
36 $ e l s e i f ( expr . sub ) $
37 $expr ( expr= f i r s t ( expr . sub ) ) $−$expr ( expr= l a s t ( expr . sub ) ) $
38 $ e l s e i f ( expr . concat ) $
39 $expr ( expr= f i r s t ( expr . concat ) ) $||$expr ( expr= l a s t ( expr . concat ) ) $
40 $ e l s e i f ( expr . add ) $
41 $expr ( expr= f i r s t ( expr . add ) ) $+$expr ( expr= l a s t ( expr . add ) ) $
42 $endif$

Figure 4.13 PICO abstract syntax tree unparser in StringTemplate.
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block scoping of meta-variables, but it introduced some undesired boilerplate
code. In case of JSP and ERb an explicit stack mechanism for the meta-variables
must be defined. In case of Velocity we used helper meta-variables to prevent
updates of meta-variables from an inner scope.

The PICO unparser based on StringTemplate has the fewest lines of code.
StringTemplate provides a block scoping mechanism making explicit defini-
tion of a stack unnecessary. However, in comparison to our metalanguage,
StringTemplate has the limitation that it can only handle unordered trees. An
extra transformation is necessary to convert the input data from an ordered
tree to an unordered tree. This conversion uses ordered lists to represent the
unordered children of a node, where the StringTemplate meta code can fetch
an indexed element using a number of list operations.

Besides the metalanguage, the (implicit) behavior of the template evaluator is
important. During implementation of the unparser, we experienced that, for
example, some versions of ERb print text to the output at spurious moments.
This is not a problem when having a single template, but with the recursively
called subtemplates, the output characters are printed in the wrong order.
Subtemplates must be first evaluated and the resulting string must be inserted
in the calling template and not directly be sent to the output stream.

4.6 Conclusions

In this chapter we defined our metalanguage based on the linear deterministic
top-down tree-to-string transducer. Five constructs are provided: subtemplates,
match-replace placeholder, substitution placeholder, iteration placeholder and
conditional placeholder. The support for subtemplates and match-replace place-
holders ensures that our metalanguage is unparser-complete. The substitution
placeholder, iteration placeholder and conditional placeholder are abbrevia-
tions for combinations of subtemplates and match-replace placeholders. Our
metalanguage cannot change the input data to prevent calculations in the
template and enforce separation of model and view.

We implemented unparsers for the PICO language to compare our meta-
language with the metalanguages of ERb, Velocity, JSP and StringTemplate.
StringTemplate needs the fewest lines of code to implement an PICO unparser,
but in contrast with our metalanguage, StringTemplate cannot directly accept
all regular trees without a translation function. The ERb, Velocity, JSP come
with a Turing complete metalanguage. These rich metalanguages increase
the chance of undesired programming in templates, which can result in tan-
gling of concerns. Although these industrial approaches provide a Turing
complete metalanguage they do not have a block scoping mechanism for the
meta-variables. A workaround for proper handling of meta-variable scopes
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was necessary to implement the PICO unparser. This resulted in additional
boilerplate code.



5
Syntax Safe Templates

T
ext–based template evaluators only contain a parser for the metalanguage,

but the object language is considered as text. We discuss the construction
of a template grammar aware of (sub) languages in a template. Parsing
a template using a template grammar ensures that all (sub) sentences

are syntactically correct. The construction of such a template grammar is generic
and based on the combination of the metalanguage grammar and the object language
grammar, where only a combination grammar connecting both has to be defined
manually. Presence of a template grammar allows one to detect misspellings in the
object language and metalanguage during parsing, without the need of compiling or
interpreting generated code.

5.1 Introduction

Writing templates, and code generators in general, is a complex and error
prone task. This complexity1 mainly results from mixing multiple languages
in a template, executed at different stages, and the incompleteness of the
object code. Manual verification of incomplete object code is hard to do and
computers cannot execute incomplete code. Hence, generating all possible
outputs followed by verifying the result using a compiler or interpreter seems
a valid route. However, to guarantee that a template generates syntactically
correct sentences during production use, a possibly exploding amount of input
data test cases must be defined for every template. Furthermore, an error must
be manually traced back to its origin, which is not always obvious, such as
sometimes experienced when using the C preprocessor [41], where the compiler
error messages point to the post-processed code instead of the original source

1 The complexity here considered is complexity in the broadest sense of the word and not for
example computational complexity.
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code. Checking the template directly offers accurate error messages, pointing
to the origin of the error.

Text-based template evaluators are not able to check the object code, since
they have no notion of the object language. These evaluators only process
and check the meta code and do not deal with the correctness of the rest
of the template. Ignorance of the correctness of the object code can lead to
undetected syntax errors [103]. Misspellings in the object code, such as missing
semicolons, are easily made and in such case text-based template evaluators
generate syntactically incorrect code without giving a warning.

Beside the problems during development, dynamic text-based code generation
as used in web applications can result in serious security issues, like malicious
code injection. We will discuss an example of malicious code injection in
Chapter 7.

In order to remove the possibility of syntax errors in the generated code, we
introduce the notion of syntax safety for templates. Syntax safety is a property
of a code generator. For every possible input the output of a syntax safe code
generator can be recognized by a parser for the intended resulting language,
i.e. the code generator produces output sentences of the language L(Gintended).
The intended language is the language for which the code generator should
produce sentences, for example, Java or C.

We present an approach based on constructing a grammar for templates
containing the definition of the metalanguage and the object language of a
template. The benefit of our approach is that not only the output code is
syntactically correct, but also syntax errors are found in the template itself.
Hence, this approach helps to avoid syntax errors, both in the meta code and
in the object code, before the template is used for generating code.

Figure 5.1 shows the architecture used for syntax safe template evaluation.
The first stage is parsing the template using a template grammar. This chapter
focuses on specifying template grammars based on an (off-the-shelf) grammar
of the object language [70]. The second stage is static semantic checking, which
is discussed in Chapter 8. The static semantic checking is optional as it is not
necessary to achieve syntax safety. The last step is the evaluation of templates.
We implemented a syntax safe template evaluator called Repleo. Repleo is a
generic syntax safe template evaluator system parameterized with the template
grammar. Chapter 6 discusses this evaluator.

5.2 Syntax Safe Templates

During the discussion of the metalanguage for templates in Chapter 4, we
ignored the object language of templates. The object language was considered
as strings or sequences of alphabet symbols. Considering the object language
as strings does not guarantee that the output sentences are well-formed with
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Figure 5.1 Syntax safe evaluation architecture.

respect to their intended output language L(Gintended). This section will discuss
the requirements to ensure that a template cannot produce sentences that are
not in L(Gintended).

In a template the following languages are involved: L(Gobject), L(Gmeta),
L(Gtemplate) and L(Goutput). The sentences and structure of the template di-
rectly copied to the output sentence of the evaluator, i.e. the object code, are
defined by the object language L(Gobject). The placeholders in the template are
sentences of the (context-free) metalanguage L(Gmeta) and they are interpreted
by the template evaluator and not propagated to the output sentence. The tem-
plate is a sentence of L(Gtemplate), which is based on the union of the grammars
of Gobject, Gmeta and production rules connecting both. The sentences produced
by a template form the output language L(Goutput).

For example, given the template <: $x :>b<: $y :>, where $x and $y are
meta-variables bound to $x = a respectively $y = c. Evaluating this template
results in the sentence abc. Considering the different languages, the following
statements must hold for the grammars describing this template:

� abc is a sentence of L(Goutput);

� <: $x :> and <: $y :> are sentences of L(Gmeta);

� b and n1n2n3, where n1, n2 and n3 are nonterminals, are sentences of
L(Gobject). n1n2n3 represents the structure defined by the object language
grammar. The concrete implementation of grammar Gobject is undefined
as long as it produces a language with a sentence of the form n1n2n3.
Furthermore, since the template contains a b on the place of n2 the
language L(n2) must at least contain the sentence b;
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� <: $x :>b<: $y :> is a sentence of L(Gtemplate).

We have discussed L(Gobject), L(Gmeta), L(Gtemplate) and L(Goutput) from a
descriptive point of view. Since we aim for syntax safe templates, we will
discuss these languages from a declarative point of view, where the languages
describe the allowed sentences. First a new language L(Gintended) is introduced.
This language is the intended output language of a code generator, where
we assume that L(Gintended) is a context-free (programming) language. It is
undesirable that a meta program can produce sentences which are not part of
L(Gintended); a meta program should be syntax safe.

Definition 5.2.1. (Syntax safety). A meta program p is called syntax safe
with respect to the intended language L(Gintended) if p, independent of its
input, always generates a sentence s which is a sentence of the intended
language L(Gintended). In other words program p is syntax safe if L(Goutput) ⊆
L(Gintended).

We aim for syntax safe template evaluation, therefore we want to construct
a Gtemplate describing the templates which always result in generation of a
sentence in L(Gintended). A template is a sentence of L(Gtemplate), which is based
on a combination of the grammars Gobject and Gmeta. The next lemma shows
that L(Gobject) is at least equal to L(Goutput).

Lemma 5.2.2. The output language of a template L(Goutput) is a superset of
the object language L(Gobject).

(proof) Given a template template[s] without placeholders, then
s ∈ L(Gobject). The object code is copied to the output of the template evaluator
start(s, ε) ⇒ s, so s must be a sentence of the language L(Goutput). So all
sentences of L(Gobject) must be in L(Goutput). Beside the templates without
placeholders, the template may contain placeholders. Placeholders can be
substituted by any sentence, which does not have to be specified by the object
language, as a result L(Goutput) ⊇ L(Gobject).

In case of a text-based template environment L(Gobject) is defined as all possible
sentences using an alphabet (most times the set of ASCII characters) minus the
syntax defined by L(Gmeta). Considering the example <: $x :>b<: $y :>, the
placeholders <: $x :> and <: $y :> are not defined by the object language,
otherwise the template evaluator cannot make a distinction between meta code
and object code. The L(Gobject) used in text-based templates has no restrictions,
since it is only defined as a sequence of alphabet symbols. The result is that
the output language L(Goutput) of text-based templates is often a superset of
the intended output language L(Gintended). This L(Gobject) enables the template
evaluator to generate a sentence that is not in the set of sentences produced by
L(Gintended) and thus can result in generating code containing syntax errors.
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For example in case of generating code for the PICO language, it is possible
in a text-based template environment to generate an identifier starting with a
number, which is not allowed by the PICO language.

In order to satisfy the requirements for syntax safety, it is necessary to ensure
that the object code in a template exist of (sub)sentences of L(Gintended) and
that the meta code is replaced by (sub)sentences of L(Gintended). The approach
to guarantee that placeholders are substituted by (sub) sentences of L(Gintended)
is discussed in Chapter 6.

In order to ensure the object code of a template is a (sub) sentence of Gintended,
a template grammar Gtemplate is constructed defining all valid templates for
L(Gintended). The Gobject part of Gtemplate should be equal to Gintended and the
start symbol of Gtemplate should also be equal to the start symbol of Gintended.
Indeed, L(Gtemplate) should also contain the sentences without placeholders,
i.e. sentences of L(Gintended).

Merging both grammars is not sufficient, as a connection between both gram-
mars must be made. Otherwise the sentences of the metalanguage are not
allowed as sub sentences of the object language. A context-free language can
be extended by adding new alternatives for nonterminals. When a template
contains placeholders, Gobject should be extended with the placeholder syntax
of Gmeta resulting in a Gtemplate in such way that the template is a sentence of
that instantiated Gtemplate.

The placeholder syntax defined in Gmeta is added as an alternative for nonter-
minals of Gobject in Gtemplate. Hence, the placeholders in syntax safe templates
can only replace context-free parts, as it cannot cover multiple nonterminals.
For example, in a text-based template it is possible to write the PICO template
BEG<: id() :>ND, while in a template based on a context-free grammar it
is only possible to write BEGIN <: id() :> a := 1 END. In the first case the
placeholder overlaps multiple (non)terminal symbols, while in the second case
the placeholder can be parsed as the nonterminal DECLS. The next theorem
shows that a Gtemplate can be constructed ensuring that the object code and its
output language is a (sub)sentence of L(Gintended).

Theorem 5.2.3. For every L(Gintended) a template grammar Gtemplate containing
placeholder syntax can be constructed, which ensures that the object code is a
(sub)sentence of that L(Gintended).

(proof) Given a template tmp = template[s], evaluating this template results
in the output sentence start(tmp, ε) ⇒ s. The template is syntax safe if s ∈
L(Gintended), i.e. parsing s using Gintended should return a parse tree. So Gtemplate
must be a sub grammar or equal to Gintended, otherwise it is possible to generate
a sentence s not in L(Gintended).

A template can contain placeholders. They are not part of the syntax of the
object language. In order to ensure syntax safety, under a strict condition
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Gtemplate may be extended with the syntax of the placeholders. This condition
is that all additional placeholder syntax is replaced by valid (sub) sentences of
Gintended during evaluation of the template. We have two kernel placeholders:
the subtemplate call placeholder and the match-replace placeholder. For both
placeholder we show that extending nonterminals in Gtemplate is syntax safe.

Assume that Gtemplate contains an object language production rule of the form
S→ AA′, where S is the start symbol and A and A′ are nonterminals. Consider
the templates tmps:

template[
<: a() :> s’
]
a[
s’’
]

where s’ and s’’ may recursively contain placeholders. The evaluation

start(tmps, t)⇒ s

is syntax safe, when for every input data (sub)tree t accepted by the template
the output s ∈ L(Gintended). That is, when <: a() :> replaces itself by sentence
of L(A) and s′ ∈ L(A′). Subtemplate a must produce a sentence of L(A)
to ensure that <: a() :> replaces itself by sentence of L(A), which means
that the production rule TMPS→ “a[”A“]” is in Gtemplate, where TMPS is the
nonterminal representing the list of (sub)templates. Since the subtemplate a
produces a sentence of L(A) it is allowed to add the production rule

A→ “〈: a(”Expr“) :〉”

in Gtemplate, where Expr is the nonterminal for the metalanguage expressions.

Assume that Gtemplate contains object language production rules S → A and
S→ A′, where S is the start symbol and A and A′ are nonterminals. Consider
the template tmps:

template[
<: match :>
<: mp =:> s’
<: mp’ =:> s’’

<: end :>
]

where s′ and s′′ may recursively contain placeholders. For every t accepted by
the template, that is if t matches mp or mp′, the evaluation start(tmps, t) ⇒ s
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is syntax safe, when s ∈ L(Gintended). The match-replace selects either s′ or s′′,
which means that s′ and s′′ must be a sentence of L(Gintended), i.e. a sentence
of L(A) or L(A′). In order to ensure that the template fulfills this requirement
the following productions rules are added to Gtemplate:

� S→ “〈: match” Expr “〉” MatchRuleS + “〈: end :〉”

� MatchRuleS→ “〈: ” MP “ =:〉” S

where MP is the nonterminal for the match-pattern syntax and Expr for the
metalanguage expression syntax. Furthermore the MatchRule nonterminal has
a suffix S to specify that only match-rules containing object code for the
nonterminal S can be used.

A Gtemplate constructed using these rules defines the language of templates
resulting in a syntax safe template evaluation for Gintended. If a template is a
sentence of such a Gtemplate then its evaluation result is a sentence of L(Gintended),
since the applied placeholders are always replaced by a (sub)sentence valid for
the nonterminal where they are applied.

After constructing a Gtemplate it is possible to build a parse tree of a template.
A schematic view of such parse tree of a template is shown in Figure 5.2.
Gobject and Gtemplate have the same start symbol. The placeholders are visualized
by black sub-parse trees. The Gmeta part of Gtemplate is used to parse them. A
special case is the black part that contains a white subtree. At that point a
placeholder contains a piece of object code, which is used as a pattern to
replace the placeholder, as the case for the match-replace placeholders. The
match-replace starts with a piece of meta code and fragments of object code
are defined in the match-rules. It is allowed that a white part contains a black
part, this black part a white part, and so on. This represents recursive nesting
of placeholders, such as a match-replace placeholder applied inside a match
rule of another match-replace placeholder.

Having a Gtemplate enables the parsing of the entire template. The metalanguage
and object language in a template are parsed simultaneously and misspellings
in these languages are detected during the parsing phase. Syntax errors are
found in the entire template. This helps to find syntax errors in the static
part of the template before the template is evaluated, and thus input data is
not necessary to detect these errors. A template only based on match-replace
placeholders and subtemplates is already syntax safe. When the input data
tree is accepted by the template, it generates a sentence of L(Gintended). An
invalid input data tree will not result in output code, but will result in an error,
because it is not accepted by the template.
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Figure 5.2 Schematic view of a parse tree of a template.

5.3 The Metalanguage Grammar

In this section we present the implementation of template grammars in SDF.
The syntax of the placeholders is based on the metalanguage of Chapter 4.
The template grammar is obtained by combining the object language grammar
and placeholder grammar by adding the placeholder syntax as alternative to
the object language nonterminals. Since we use SDF, it is possible to use the
module parameters to specialize the placeholder syntax for a specific nonter-
minal, instead of redefining the placeholder syntax for every nonterminal, as
proposed by Theorem 5.2.3. An SDF grammar module may have a number of
(non)terminal parameters, which can be substituted during the import of a
module by the actual required (non)terminal. When the placeholder grammar
is added as an alternative for an object language nonterminal, this grammar is
parameterized with that object language nonterminal to inject the placeholder
syntax as alternative for it. The use of module parameters results in a compact
definition of the grammar Gtemplate. A template grammar is defined by a com-
bination module importing the placeholder syntax for each object language
nonterminal which should be extended.

We start with the discussion of syntax shared by all metalanguage constructs.
Since some shared constructs can be confusing without knowing specific details
of the different constructs, it can be recommended to first read the sections
about the different constructs and use the shared syntax as reference. We
present the grammars in the order of dependency starting with the shared
syntax. After the shared syntax is presented, the syntax of the subtemplates,
match-replace placeholder and substitution placeholder is given.
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5.3.1 Shared Syntax

The syntax definitions of the three placeholders have a number of shared syntax
artifacts. This section discusses the syntax of the hedges, explicit syntactical
typing of placeholders and meta-comment.

A. Hedges

Hedges are a syntactical construct used to indicate the transition between object
language and metalanguage. In text template systems hedges are obligatory
to recognize the placeholders. When a template is parsed and both object
language and metalanguage are part of the template grammar, hedges are
not longer necessary [115]. The parser will recognize the placeholders as meta
code as it cannot be parsed as a piece of object code. If the syntax of the
metalanguage overlaps with the syntax of the object language ambiguities
can occur. When hedges are used, which are not part of the object language,
these ambiguities are efficiently eliminated. In the other cases disambiguation
strategies should be defined in order to filter these ambiguities [115].

Besides the ambiguities, the use of hedges makes the transition between meta
code and object code visual, so the transition can be easily recognized by
humans. Our focus is not on providing templates without hedges and on
dealing with the possible ambiguities.

It is essential that the hedges are a sequence of characters disjoint of the syntax
of the object language to prevent ambiguities. Since the hedges are only used
during the parsing phase and have no semantic meaning, the definition can be
overridden by an alternative sequence of characters. We have chosen for the
character sequences <: and :> for aesthetic reasons. Moreover, these character
sequences are not commonly used in object languages. These default hedges
are defined in the SDF module of Figure 5.3.

B. Syntactical Typing of Placeholders

Template grammars can become ambiguous, since a placeholder can be parsed
as multiple nonterminals. In Section 6.7 we discuss the origin of ambiguities in
detail and present a filter to handle them. However, the use of an ambiguity
filter reduces the performance of the template evaluator. Therefore we included
a syntactical construction to force the parser to parse a placeholder as a speci-
fied nonterminal. This construction is the PlaceHolderType[[Sort]] sort. It
can be used to disambiguate a placeholder when multiple types of placehold-
ers fit on a position. The PlaceHolderType[[Sort]] sort is explicitly typed
via parameterization using the [[Sort]] syntax. This is necessary to special-
ize PlaceHolderType for nonterminal Sort, which removes overlap between
PlaceHolderType’s when multiple object language nonterminals are extended.
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1 module Common[ " Sor t " Sor t ]
2

3 exports
4 s o r t s BeginTag EndTag
5

6 l e x i c a l syntax
7 " <: " −> BeginTag
8 " : > " −> EndTag
9

10 " s o r t : " " Sor t " −> PlaceHolderType [ [ Sor t ] ]
11

12 BeginTag "%%" l i n e :~[\ n]∗ EndTag
13 −> LAYOUT

Figure 5.3 Syntax shared by all placeholders.

It is, for example, used in Figure 6.8 at line 24 to force that the placeholder
<: $stms sort:STATEMENT* :> is parsed as the nonterminal STATEMENT*.

C. Meta-comment

The last provided syntactical artifact is meta-comment: <:%% meta-comment :>.
Meta-comment is not copied to the output code and its purpose is documenting
template code, which is not relevant in the generated code. It is an alternative
for the LAYOUT sort, which is a special kind of nonterminal in the SGLR
implementation in order to handle layout. The LAYOUT sort represents all
tokens which have no semantic meaning. The other layout artifacts are one-to-
one copied to the output, necessary for output languages with layout criteria
and to generate human readable output code.

5.3.2 Subtemplates

Two syntactical constructions are necessary for subtemplates. First subtem-
plates must be declared and identifiable, second a call placeholder is necessary
to instantiate a subtemplate. The subtemplate is declared via a label, followed
by a fragment of code. The call placeholder for a subtemplate consists of a pair
of hedges combined with the identifier of the subtemplate and an expression
to provide a new input data context to the subtemplate.

Figure 5.4 shows the grammar definition. The subtemplate is declared by an
identifier of the sort IdCon followed by the object code of syntactical type Sort
between square brackets. The call placeholder consists of a couple of hedges, an
identifier and an expression. The syntax of the hedges and the expressions are
provided via imported grammars. The expression grammar defines the syntax
for the meta-variables, tree queries and string concatenation. Optionally it
can be disambiguated using the syntax defined by PlaceHolderType[[Sort]].
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1 module PlaceHolderSubTemplate [ " Sor t " Sor t ]
2

3 imports Common[ " Sor t " Sor t ]
4 imports b a s i c / I d e n t i f i e r C o n
5 imports Expression
6

7 exports
8 s o r t s Template
9

10 context−f r e e syntax
11 IdCon " [ " Sor t " ] " −> Template
12

13 BeginTag IdCon " ( " Expression " ) "
14 PlaceHolderType [ [ Sor t ] ] ? EndTag
15 −> Sor t { placeholder ( " subtemplate " ) }

Figure 5.4 Syntax for subtemplates.

The annotation placeholder("subtemplate") is used by the evaluator, see
Chapter 6, to detect the placeholder.

In order to parse a template with call placeholders, it is necessary to embed the
placeholder syntax in the object language. This grammar module defines the
placeholder syntax with the generic result nonterminal Sort. The definition
can be added as an alternative to an arbitrary object language nonterminal.
The injection of the placeholder in the object language is achieved by importing
the placeholder grammar, while parameterizing this module with an object
language nonterminal. During parameterization Sort is internally replaced by
the object language nonterminal, as a result the placeholder syntax becomes
an alternative for that object language nonterminal.

The parameterizing of Sort is compliant with the proposed construction of
template grammars in Theorem 5.2.3. The identifier nonterminal used to label
the subtemplates generalizes from the fixed label in production rules supposed
by Theorem 5.2.3. This means the template evaluator should check whether
the called subtemplate result in the correct grammatical sort. Syntax safe
evaluation is discussed in Chapter 6.

An example of the use of a subtemplate can be found in Figure 6.8. At lines
39-50 the subtemplate expr is declared. This subtemplate is for instance called
at line 23.

5.3.3 Match-Replace

The match-replace placeholder is a construction containing multiple match
rules. Each match rule has a fragment of object code accompanied by a tree
match-pattern. The match-replace replaces itself with a fragment of object code
defined in the match rule. This implies that the fragment of object code in a
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1 module PlaceHolderMatchReplace [ " Sor t " Sor t ]
2

3 imports Common[ " Sor t " Sor t ]
4 imports Expression
5 imports MatchPattern
6

7 exports
8 s o r t s MatchRule
9 context−f r e e syntax

10 BeginTag " match " Expression
11 PlaceHolderType [ [ Sor t ] ] ? EndTag
12 MatchRule [ [ Sor t ] ] +
13 BeginTag " end " EndTag
14 −> Sor t { placeholder ( " matchreplace " ) }
15

16 BeginTag MatchPattern "=" EndTag
17 Sor t
18 −> MatchRule [ [ Sor t ] ]

Figure 5.5 Syntax for match-replace placeholder.

match rule must be parsed as the same object language nonterminal as the
match-replace substitutes.

The principle of extending the object language is the same as the subtemplate
call placeholder. The match-replace placeholder is also injected as an alternative
for an object language placeholder. Furthermore, it supports an expression to
specify the context for the match-rules. This expression is evaluated before the
the match-rules are tried. Figure 5.5 shows the generic match-replace grammar
module.

A match rule contains a MatchPattern and a fragment of resulting object
language code. The MatchPattern is a tree pattern containing possible meta-
variables. The syntax depends on the particular tree representation. In our case
ATerms [22] are used, but it can also be another tree syntax like XML or JSON
representation. Beside the syntax for the tree representation, the MatchPattern
supports meta-variables defined as a dollar sign followed by a label with the
character class [A-Za-z][A-Za-z\-0-9]*.

The match-replace syntax definition is also compliant with the proposed
construction of template grammars in Theorem 5.2.3. The result code of a
match rule is of the same syntactical type as the injection of the match-replace,
which is visible in the grammar definition. The MatchRule contains the Sort
nonterminal and finally the match-replace is injected in the Sort nonterminal
as alternative. The following chain of productions is recognizable: Sort ⇒
MatchRule[[Sort]]+⇒ Sort. This structure enforces that all possible results of
match-replace are of the nonterminal Sort, i.e. it is not possible to mix different
sorts in the match rule set. The MatchRule nonterminal is augmented with the
parameterized name [[Sort]], so that the MatchRule nonterminal is unique
for every object nonterminal extended with placeholder syntax.
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1 module PlaceHolderSubs t i tu t ion [ " Sor t " Sor t ]
2

3 imports Common[ " Sor t " Sor t ]
4 imports Expression
5

6 exports
7 context−f r e e s t a r t−symbols Sor t
8 context−f r e e syntax
9 BeginTag Expression PlaceHolderType [ [ Sor t ] ] ? EndTag

10 −> Sor t { placeholder ( " s u b s t i t u t i o n " ) }
11 " end " −> IdCon { r e j e c t }

Figure 5.6 Syntax for substitution placeholder.

An example of the use of a match-replace placeholder can be found in Fig-
ure 6.8. At lines 5-14 a match-replace placeholder is used.

5.3.4 Substitution Placeholder

The discussion of the syntax of the substitution placeholder may sound odd,
since it can be expressed using subtemplates and match-replace placeholders.
There are two reasons to discuss this placeholder. First, the substitution is an
intuitive construct, which allows substituting a string of the input data into
a template. Second, in a syntax safe template evaluator we can add implicit
behavior to it, which we will discuss in Chapter 6. The difference with the
previous two discussed metalanguage constructs is that syntax safety is not
enforced by the grammar, but must be handled by the template evaluator.

In short a substitution placeholder consists of a couple of hedges and an
expression to obtain the data to replace it. The syntactical pattern for the
substitution placeholder is <: Expr :> or <: Expr sort:SORT :>, where the
capitalized SORT is the nonterminal name. This last construction is used to
force the parser to parse the placeholder as the given syntactical type to solve
ambiguities. A generic syntax definition of the substitution placeholder is given
in Figure 5.6.

The substitution placeholder grammar module declares the Sort as start
symbol. This grammar is also used by the template evaluator to check if
the string provided by the input data is allowed to replace the substitution
placeholder.

A final note: For aesthetic and readability reasons we have chosen for the
word end in the closing tag of the match-replace placeholder. Since end can be
parsed as nonterminal IdCon an ambiguity may occur on the closing tag of the
match-replace placeholder given that it also can be recognized as a substitution
placeholder. The end label is rejected as IdCon in order to remove the chance
of this ambiguity. This reject restricts the use of the word end as label in the
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1 module PlaceHolder [ " Sor t " Sor t ]
2

3 imports P laceHolderSubs t i tu t ion [ " Sor t " Sor t ]
4 imports PlaceHolderSubTemplate [ " Sor t " Sor t ]
5 imports PlaceHolderMatchReplace [ " Sor t " Sor t ]

Figure 5.7 Combination of all placeholders to a single module.

input data. One can choose to replace end with a sequence of characters which
cannot be parsed as an IdCon in order to remove this restriction.

5.4 Grammar Merging

We have discussed the generic parts of the metalanguage grammar. The tem-
plate grammar Gtemplate is instantiated by combining the Gobject and Gmeta via
importing both grammars in a combination module and describing their
connection. In order to connect the object language and the metalanguage,
nonterminals of the Gobject are extended with an extra alternative to connect the
object language nonterminal with the root nonterminal of the metalanguage.

The presented placeholder syntax definitions are independent of the object
language grammar. In order to inject the placeholder syntax in the object
language grammar, the placeholder grammar modules are imported in the
combination module and at the same time parameterized with a nonterminal
of the object language grammar. At the moment that the placeholders are
imported and parameterized with a nonterminal of the object language, the
placeholder is injected as an alternative for that nonterminal. Since all three
placeholder construct are simultaneously applied to a nonterminal, the three
previously defined placeholder modules are combined in a single module
called PlaceHolder, which is shown in Figure 5.7. A small note must be made
on the parameterization arguments: "Sort" must be the literal name of the
Sort and is used as a keyword to fix the sort of substitution placeholders
syntactically, since SDF has no syntax to do this automatically.

The last grammar module, shown in Figure 5.8, is of a more operational nature.
It defines a start symbol TemplateSet representing a list of (sub)templates.
The template with the identifier template is the starting point of the evaluator
and it contains object code for Sort, which is most likely the start symbol of
the object language. This start template may be accompanied by a file name to
instantiate a file containing the generated code. This is a requirement for using
templates for case studies and other real world applications. The nonterminals
Filename and SubDirectory belonging to the nonterminal File are extended
with placeholders to enable parameterization. The Template* nonterminal is
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1 module StartSymbol [ " Sor t " Sor t ]
2

3 imports b a s i c / I d e n t i f i e r C o n
4 imports u t i l i t i e s / f i l e I O /Direc tory
5 imports P laceHolderSubs t i tu t ion [ " Filename " Filename ]
6 imports P laceHolderSubs t i tu t ion [ " SubDirectory " SubDirectory ]
7 imports PlaceHolder [ " Template∗ " Template∗]
8

9 exports
10 context−f r e e s t a r t−symbols
11 TemplateSet
12

13 s o r t s Template
14

15 context−f r e e syntax
16 " [ " Template∗ " ] " −> TemplateSet
17 " template " " [ " F i l e " , " Sor t " ] " −> Template
18 " template " " [ " Sor t " ] " −> Template
19 " template " −> IdCon { r e j e c t }

Figure 5.8 Start symbol module.

also extended with placeholder syntax to enable iteration. Figure 5.8 shows
the start symbol module.

All ingredients for the combination module to instantiate a template grammar
are defined. The combination module is the only object language specific part
of the Gtemplate definition. It imports the object language, it instantiates the
StartSymbol module and it defines which nonterminals of the object language
are injected with placeholder syntax.

A side effect of the injection of placeholders in an object language is that
the grammar Gtemplate often becomes highly ambiguous. The ambiguities are
caused by the possibility to recognize multiple parameterized placeholders.
The chance of ambiguities increases if more object language nonterminals
are extended with placeholder syntax. Therefore automatic parameterization
of placeholders with every object language nonterminal is undesired. The
selection process of the nonterminals for parameterization of the placeholders
must be done manually. In Section 6.7 we will discuss this problem in more
detail. It is hard to automatically predict which sorts must be selected for
the parameterization of placeholders. A similar problem is discussed in [119]:
although the authors generate their connection rules, they consider it useful to
have full control over the selection of the nonterminals.

Figure 5.9 shows the combination module for the PICO Language. This tem-
plate grammar can parse the unparser template of Figure 4.7.

There is one requirement left for the object language grammar. Nonterminals
in Gobject must not be defined in Gmeta, that is Nobject ∩ Nmeta = ∅; otherwise
undesirable and uncontrolled nonterminal injections occur. In practice this can
be simply achieved by adding a unique prefix or suffix to the (non)terminals of
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1 module Template−Pico
2

3 imports Pico
4

5 imports StartSymbol [ "PROGRAM∗ " PROGRAM∗]
6 imports PlaceHolder [ " NatCon " NatCon ]
7 imports PlaceHolder [ " StrCon " StrCon ]
8 imports PlaceHolder [ "TYPE" TYPE]
9 imports PlaceHolder [ "PICO−ID " PICO−ID ]

10 imports PlaceHolder [ "EXP" EXP]
11 imports PlaceHolder [ "STATEMENT" STATEMENT]
12 imports PlaceHolder [ " ID−TYPE" ID−TYPE]
13 imports PlaceHolder [ "DECLS" DECLS]
14 imports PlaceHolder [ "PROGRAM" PROGRAM]
15 imports PlaceHolder [ "STATEMENT∗ " {STATEMENT " ; " }∗ ]
16 imports PlaceHolder [ " ID−TYPE∗ " { ID−TYPE " , " }∗ ]

Figure 5.9 PICO combination module.

a grammar, or a typical SDF specific solution consists of parameterization of all
nonterminals of a language with its language name to create a namespace [27].

The modularity of SDF allows us to specify the metalanguage and object
language grammars separately. The advantage of this approach is the ease of
using off-the-shelf object language grammars [70]. In case an off-the-shelf object
language grammar is not available and full syntax checking of templates is
not required, one can decide to use an island grammar [82]. An island grammar
only defines small parts of a language. The rest of the language is defined at a
global level, for example as a list of characters.

The presented grammar modules are defined in SDF. It should be possible to
use another syntax formalism. When modularization and parameterization are
not available one can choose to instantiate the placeholder injections using a
code generator. The most important feature is that the chosen parser supports
ambiguities, but this requirement does not depend on the chosen syntax
formalism.

5.5 Related Work

We discuss SafeGen, a template like code generation approach guaranteeing at
least syntax safety. SafeGen [61] is an approach aiming for type safe templates.
It uses an automatic theorem prover to prove the well-formedness of the
generated code for all possible inputs.

This approach heavily depends on the assumptions that the input is a valid Java
program and the knowledge of the Java type system. The template programmer
can define placeholders (cursors) to obtain data from the Java input program.
Those placeholders must contain constraints based on their use in the template.
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For example a placeholder in the extends section of a class in a template must
guarantee the extended class is not final. A prover used to check the constraints
ensures that the template cannot generate ill-formed code.

SafeGen depends on the knowledge that the input and output program is
Java. This fact makes the environment incapable of generating code from
an abstract high-level input data in another representation than the object
language, because the approach depends heavily on reflection. Although the
approach could give more and better guarantees about the generator, switching
to another object language and input data representation is hard. A template
grammar, such as described here, is more flexible in the choice of input data
language and output language.

Another approach to achieve syntax safe code generation is using abstract
parsing [75]. Abstract parsing is a statical analysis technique for checking the
syntax of generated strings. It uses data-flow analysis and checks via a kind
of parser if the data-flow produces a sentence conform the intended output
language grammar. During runtime no further checking is required. This
technique requires an analyzer for the data-flow to feed the parser, while we
directly parse the template. Abstract parsing is a generalization of the template
grammar we presented, as it can be used for every kind of meta program,
when data-flow analysis is possible. In contrast with abstract parsing, our
approach does not need external data-flow analysis to achieve syntax safety.

5.6 Conclusions

In this chapter we have presented a grammar to parse all languages in a
template simultaneously. Syntax errors in the object code of a template are
detected while parsing the template, instead of dealing with syntax errors
at compile time of the generated code. The whole template is parsed, and
thus checked for syntax errors, including rarely generated code in conditional
placeholders. Checking a template offers accurate error messages, instead of
checking the generated code such as the output of the C preprocessor [41]. It is
the first step to achieve more safety in template evaluation and helps to avoid
syntax errors, like misspellings. The templates are syntactically not different
from text templates and as a result they provide the same user experience.

The modular grammar definition combined with parameterization allows to
instantiate template grammars for different object languages with minimal
redefinition and cloning. The advantage of this approach is the ease of using
off-the-shelf object language grammars [70].

Having the parse tree of both object language and metalanguage also creates
the possibility to implement advanced IDE2 features. Templates are not well

2 Integrated Development Environment
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supported by IDE’s due to their multilingual nature. Syntax highlighting,
which we already get for free from the ASF+SDF meta-environment [21], and
other source code based features for both languages are possible.

Parsing templates on its own is not sufficient to guarantee that the output of
the template evaluator is a sentence of the output language. In Chapter 6 we
will discuss syntax safe evaluation and the requirements for it.
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Repleo: Syntax Safe Template

Evaluation

P
arsing a template is not sufficient to achieve syntax safe code generation.
The template evaluator must guarantee that it instantiates a parse tree
belonging to the set of parse trees of the object language. This guarantee
is achieved by checking that the root nonterminal of the sub parse tree

replacing a placeholder is equal to the object language nonterminal where the place-
holder is applied. Syntax safe evaluation also allows implicit subtemplates in order
to express list rendering and tree rendering in a more compact fashion. Furthermore
since templates can easily become ambiguous, an ambiguity filter is discussed. Finally,
a number of case studies show that syntax safe templates can be used for industrial
programming languages.

6.1 Introduction

Parsing a template alone is not sufficient to achieve syntax safe code generation.
By introduction of the substitution placeholder and the free choice of identifiers
for subtemplates, correctness of the parse tree of a template does not imply that
the generated code will be syntactically correct. For example, a subtemplate
call placeholder with identifier s is applied for nonterminal n1, while the
root nonterminal of the subtemplate with the identifier s is n2 and thus not
equal to n1. Although the substitution placeholder breaks static verification
of syntax safety, it is a design choice to leave it in our metalanguage as it is
one of the common constructs in a template metalanguage. The substitution
placeholder is offered by most (industrial) template evaluators. Examples of
applications of the substitution placeholder in other template evaluators are
shown by Figure 1.12, Figure 4.10, Figure 4.12 and Figure 4.13. The substitution
placeholder allows replacing it by unstructured strings stored in the input data.
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Therefore, it is necessary to dynamically verify that the string stored in the
input data is allowed to replace the placeholder.

This chapter discusses the implementation of a syntax safe template evaluator.
The template grammar is used to obtain a parse tree of a template and to check
the syntax of object code and meta code in one parse phase. The template
evaluator uses the object language grammar while substituting the placehold-
ers to guarantee that the output parse tree complies to the object language
grammar. Syntax safe evaluation is achieved by checking that a placeholder
parsed as nonterminal Aobject is replaced by a sub parse tree where the root
is nonterminal Aobject. We have implemented our approach in a prototype
called Repleo to facilitate empirical validation of syntax safe evaluation (see
Chapter 7).

We start with a discussion of the syntax safe evaluation function, followed by
the specific evaluation for the substitution placeholder, match-replace place-
holder and subtemplate call placeholder in Sections 6.3, 6.4 and 6.5. We intro-
duce the implicit subtemplate mechanism and discuss the revisited substitution
placeholder evaluation in Section 6.6. In addition to the discussion of the place-
holders, the evaluator also has to resolve ambiguities and handle separators in
Section 6.7 and 6.8. After the introduction of syntax safe evaluation, we show
some examples of syntax safe templates including a reimplementation of the
PICO unparser using the additional semantic properties of the metalanguage
in Section 6.10.

6.2 Syntax Safe Evaluation

The operational semantics of syntax safe evaluation are based on the semantics
of the metalanguage discussed in Section 4.3. We extend these operational
semantics since the information in the parse tree can be used to express implicit
subtemplates, resulting in more concise templates.

The core of the syntax safe evaluator is the same single tree traversal as
discussed in Section 4.3, with a slightly different signature:

seval : Template× Templates×MVars→ Tree,

where Template is the current template parse tree, Templates is a symbol table
containing (sub)template parse trees, MVars is a symbol table containing meta-
variables and Tree is the parse tree resulting from the template evaluation. The
functions is called seval to emphasize the difference between the non syntax
safe template evaluator eval function. The seval function differs from the eval
function of Section 4.3 in the following respects:

� The output is a parse tree of the output language, the yield function is
used to convert it to a string;
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� Template and Templates are parse trees rather than strings; lexical analysis
is performed during the template parsing;

� The symbol table Templates is a block-structured symbol table (see Sec-
tion 4.3.2).

The seval function traverses the parse tree and checks whether the current
node is a placeholder. At the moment a placeholder is found, the type of
placeholder (substitution, match-replace or subtemplate call) is obtained and
the accompanying seval evaluation sub function is invoked. The result of that
sub function is a sub parse tree replacing the placeholder node, unless an
error occurs. The final result of the evaluator function is a parse tree without
placeholders, or an error message.

In Section 5.3 we presented the grammars for the placeholders. The production
rules for the placeholders are extended by the annotation placeholder(...),
containing the kind of the placeholder, i.e. substitution, subtemplate, or
matchreplace, which is used by seval to select the evaluation function. This
annotation is an implementation choice simplifying placeholder detection in
the parse tree. The traversal function matches on the annotation instead of the
syntactical pattern of the placeholder.

When seval detects a placeholder in the parse tree, it is necessary to know to
what object language nonterminal it is applied, i.e. the type of the parent node
in the parse tree. Therefore, to obtain the object language nonterminal of the
placeholder we introduce a helper function getparentnt : Tree→ A. There are
several ways to implement this function. For example, seval can be extended
by an extra parameter holding the parent nonterminal, or the nonterminal
of the placeholder can be parameterized by the parent nonterminal. We use
a specific technical solution based on the assumption that the SGLR parser
implementation is used. The SGLR parser implementation produces verbose
parse trees, where every node is augmented with the production rule used for
instantiating it. The getparentnt function uses this production rule to obtain the
parent nonterminal. It returns the producing nonterminal from the production
rule, which is equal to the parent node in the parse tree.

6.3 Substitution Placeholder

The presence of the substitution placeholder results in the biggest difference
between the eval function and the seval function. The substitution placeholder
allows one to have unstructured data in the form of a string in the input data
tree and to use it for replacing a substitution placeholder. A mechanism is
necessary to verify that it is valid to substitute the placeholder in the template
with the string from the input data.
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A substitution placeholder of nonterminal Aobject can be safely replaced by a
sub parse tree with root Aobject. The expression specified in the substitution
placeholder can result in a string or a tree. In Section 6.6 we discuss the
behavior when the result of the expression evaluation is a tree. In case the
expression evaluator yields a string, it is necessary to convert the string to the
corresponding parse tree and check whether its root is Aobject. We implemented
the check using a parser for the object language. When the parsing succeeds
and the root nonterminal of the (sub) parse tree is Aobject, the parse tree can
safely substitute the placeholder. In case the string of the input data cannot
be parsed or the root nonterminal differs from Aobject, i.e. the string is not a
sentence of L(G(Aobject)), an error message is generated.

The following equation specifies the behavior of the syntax safe substitution
evaluation. For ease of presentation we use concrete object syntax notation in
the equation. Inspired by [119], the notation [[. . .]] is used to specify concrete
syntax, which is internally represented as a parse tree.

getparentnt([[<: expr :>]]) 7→ A
evalexpr([[expr]], bstvars) 7→ s

parseG(A)(s) 7→ t

seval([[<: expr :>]], bsttmps, bstvars) 7→ t

getparentnt([[<: expr :>]]) 7→ A
evalexpr([[expr]], bstvars) 7→ s

parseG(A)(s) = ERROR

seval([[<: expr :>]], bsttmps, bstvars) 7→ ERROR

6.4 Match-replace Placeholder

The evaluation of match-replace placeholders does not differ from the eval-
uation scheme discussed in Section 4.3.4. Only at the start of the evaluation
of the match-replace, the (sub) parse tree belonging to the match-replace is
added to the (sub)templates symbol table in a fresh scope. The label for the
subtemplate is equal to the nonterminal of the match-replace prefixed with a _.
The prefix _ is not allowed for manual declared (sub)templates, so the labels
of the implicit placeholders are hygienic with respect to the labels of manually
declared (sub)templates.

The use of scopes is necessary to remove conflicts if multiple implicit sub-
templates are added to the symbol table with the same name, i.e. the same
nonterminal of the match-replace. Furthermore, the scoping mechanism fa-
cilitates that the last added implicit subtemplate is selected, when multiple
match-replace placeholders for the same nonterminal are nested.
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The formalized behavior specification is presented below. It is almost equivalent
to the equation of Section 4.3.4, except that it uses parse trees instead of
strings. Furthermore, the sub parse tree of the match-replace is stored on the
subtemplate stack.

t1 = [[<: match :>[mr1, . . . , mri] <: end :>]]
getparentnt(t1) 7→ A

startblk(bstvars1) 7→ bstvars2
startblk(bsttmps1) 7→ bsttmps2

add(bsttmps2, _A, t1) 7→ bsttmps3
lookup(bstvars2, $$) 7→ t2

findmatch(t2, [mr1, . . . , mri], bstvars2) 7→ 〈t3, bstvars3〉
seval(t3, bsttmps3, bstvars3) 7→ t4

seval([[<: match :>[mr1, . . . , mri] <: end :>]], bsttmps1, bstvars1) 7→ t4

6.5 Subtemplate Placeholder

The behavior of the subtemplate call placeholder is that it should replace
itself with a sub parse tree with root nonterminal Aobject which is equal to the
Aobject where the call placeholder is applied. The behavior of the subtemplate
call placeholder is not changed with respect to the operation definition in
Section 4.3.3. A subtemplate is selected based on its identifier. However, the free
choice of an identifier for subtemplates results in the risk that the subtemplate
is not of the correct syntactic sort to replace the subtemplate call placeholder.

In order to guarantee syntax safety, the subtemplate call placeholder must
be replaced by a sub parse tree with the correct root nonterminal. Hence,
we are only allowed to insert the result of an evaluated subtemplate when
its root nonterminal matches the nonterminal where the subtemplate call
placeholder is applied. An extra condition is added to the original operation
semantics to check whether the root nonterminal of the subtemplate matches
the nonterminal of the calling placeholder. An error is generated in case no
suitable subtemplate can be found.

getparentnt([[<: idcon(expr) :>]]) 7→ A1
lookup(bsttmps, idcon) 7→ t

getparentnt(t) 7→ A2
A1 = A2

evalexpr([[expr]], bstvars1) 7→ bstvars2
seval(t, bsttmps, bstvars2) 7→ t′

seval([[<: idcon(expr) :>]], bsttmps, bstvars1) 7→ t′
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getparentnt([[<: idcon(expr) :>]]) 7→ A1
lookup(bsttmps, idcon) 7→ t

getparentnt(t) 7→ A2
A1 6= A2

seval([[<: idcon(expr) :>]], bsttmps, bstvars) 7→ ERROR

6.6 Substitution Placeholder Revisited

In the discussion of the metalanguage in Chapter 4 we introduced the concept
of subtemplates to enable a kind of unfolding in order to render lists and trees,
or to reduce clones in the templates. The disadvantage of using the match-
replace and subtemplates to express the rendering of lists and trees is that it is
quite verbose. Furthermore, the structure of the generated code is less clear,
since a subtemplate placeholder is called at the place where the list or tree
must be rendered. The availability of syntax safe templates enables us to define
implicit subtemplates, providing a more natural way to express unfolding. It
uses the syntactical type of the match-replace placeholder to automatically add
an implicit subtemplate to the subtemplates symbol table and the syntactical
type of the substitution placeholder to invoke the subtemplate.

The concept of implicit subtemplates is shown by the following figures. Fig-
ure 6.1 shows a snippet of the original PICO unparser with a subtemplate
decls. This subtemplate can be re-factored to an implicit subtemplate. Fig-
ure 6.2 shows the integration of the subtemplate decls in the first match-
replace placeholder. The subtemplate call <: decls($tail) :> is replaced by
a substitution placeholder <: $tail :>. Since the match-replace placeholder
will be parsed as Decls and the placeholder <: $tail :> will also be parsed
as Decls, this mechanism will render a list of declarations. We can also omit
the [ head ] match rule as specified in the original PICO unparser of Chap-
ter 4, since the syntax safe evaluator provides a generic separator handler (see
Section 6.8).

Implicit subtemplates use the property that the object language nonterminal
can be used as a label for a subtemplate. As mentioned in Section 6.4, the
sub parse tree of a match-replace placeholder is added to symbol table con-
taining the subtemplates. The match-replace placeholder acts as an implicit
subtemplate, where the identifier is the object language nonterminal prefixed
by an underscore. The implicit subtemplate can be called by a substitution
placeholder in the object code fragments of the match rules. A substitution
placeholder becomes an implicit subtemplate caller, when its expression results
in a subtree of the input data instead of a string. At the moment the expression
returns a tree, an implicit subtemplate is selected based on the syntactical type
of the substitution placeholder. The last added implicit subtemplate with the
same syntactical type as the substitution placeholder is used for evaluation.
The current input data context is set to the subtree selected by the expression of
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1 template [
2 <: match : >
3 <: program ( de c l s ( $dec l s ) , $stms ) =: >
4 begin d ec lare
5 <: dec l s ( $dec l s ) : > ;
6 <: stms ( $stms ) : >
7 end
8 <: end : >
9 ]

10

11 dec l s [
12 <: match : >
13 <: [ ] =: >
14 <: [ $head ] =: > <: idtype ( $head ) : >
15 <: [ $head , $ t a i l ] =: > <: idtype ( $head ) : > , <: dec l s ( $ t a i l ) : >
16 <: end : >
17 ]

Figure 6.1 Original snippet of PICO abstract syntax tree unparser.

1 template [
2 <: match : >
3 <: program ( de c l s ( $dec l s ) , $stms ) =: >
4 begin d ec lare
5 <: match : >
6 <: [ ] =: >
7 <: [ $head , $ t a i l ] =: > <: idtype ( $head ) : > , <: $ t a i l : >
8 <: end : > ;
9 <: stms ( $stms ) : >

10 end
11 <: end : >
12 ]

Figure 6.2 Implicit subtemplate example.

the substitution placeholder. If no implicit subtemplate can be found, an error
will be generated. The additional rules for the behavior of the substitution
placeholder calling an implicit placeholder are shown below.

getparentnt([[<: expr :>]]) 7→ A
evalexpr([[expr]], bstvars1) 7→ t

startblk(bstvars1) 7→ bstvars2
add(bstvars2, $$, t) 7→ bstvars3

lookup(bsttmps, _A) 7→ t1
seval(t1, bsttmps, bstvars3) 7→ t2

seval([[<: expr :>]], bsttmps, bstvars1) 7→ t2
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getparentnt([[<: expr :>]]) 7→ A
evalexpr([[expr]], bstvars1) 7→ t

startblk(bstvars1) 7→ bstvars2
add(bstvars2, $$, t) 7→ bstvars3

lookup(bsttmps, _A) = ε

seval([[<: expr :>]], bsttmps, bstvars1) 7→ ERROR

6.7 Ambiguity Handling

Adding placeholders to the grammar of an object language to obtain a template
grammar can lead to undesired ambiguities. An ambiguity occurs when a (sub)
parse tree of a (sub) sentence can be constructed in multiple ways using the
production rules of a context-free grammar. In the situation of the constructed
template grammars ambiguities can have two causes: either the object language
grammar itself is already ambiguous or the combination of object language
grammar and metalanguage grammar introduces ambiguities. Ambiguities are
a problem when parsing (source) code, because it can lead to misinterpretation.
Although those ambiguities are unwanted when analyzing source code, they
do not matter when generating source code, as we will show in this section.

Instantiating template grammars, by adding placeholders to an object lan-
guage grammar, can introduce new ambiguities. Placeholders are added as
alternative for different object language nonterminals, but the syntax of these
placeholders is equal. The parser cannot distinguish syntactically the desired
derivation when different placeholders fit, hence the introduction of the explicit
syntactical typing for placeholders via the optional syntax of the nonterminal
PlaceHolderType[[Sort]]. There are two causes for ambiguities resulting by
adding placeholders as alternatives for object language nonterminals:

� Multiple sibling alternative placeholders can be used to parse the sen-
tence;

� The placeholders are defined in chain rules and multiple chain rules can
be used to parse the sentence.

The following examples illustrate these two causes. The first example is based
on different possible sibling alternatives for a nonterminal. This kind of ambi-
guity is introduced when a grammar has the following two production rules:
n1 → n3, n2 → n3, where both n1 and n2 are extended with a placeholder.
Consider the grammar of Figure 6.3. The grammar becomes ambiguous when
placeholder syntax is added for nonterminals A and B. Figure 6.4 shows the
ambiguous parse tree of the template <: v1 :>. The placeholder can be either
parsed as child of the nonterminal A or as child of the nonterminal B. It de-
pends on the value stored in the input data for the node v, whether the final
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1 context−f r e e s t a r t−symbols C
2 context−f r e e syntax
3 A | B −> C
4 " a " −> A
5 " b " −> B

Figure 6.3 Grammar with two alternatives.

START

C

amb

A

PlaceHolder[[A]]

...
v1

B

PlaceHolder[[B]]

...
v1

Figure 6.4 Parse tree of ambiguous template.

evaluated template results in the branch for nonterminal A or the branch for
nonterminal B.

During evaluation, the final selection of which alternative succeeds depends
on the content of the input data. Consider the following two inputs:

1. v( "a" )

2. v( "b" )

Both inputs will result in a valid parse tree for the object language. The first
input yields the left branch of the ambiguity, the second input the right branch.

The second example of an ambiguity is based on chain rules. The second cause
for ambiguities is the presence of chain rules in the grammar, where parent
and child nonterminal both are extended with a placeholder. A production
rule is a chain rule, when it has the following form n1 → n2. Consider the
grammar of Figure 6.5 and define placeholders for the nonterminals A and
B; the grammar becomes ambiguous. Figure 6.6 shows this ambiguity inside
the parse tree of the term <: "a" :>. The placeholder can parsed either as an
placeholder for the nonterminal A or B. Considering Figure 6.5, after evaluation
PlaceHolder[[A]] will return a sub parse tree with A as root and "a" as child,
while evaluating PlaceHolder[[B]] will return a sub parse tree with B as root,
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1 context−f r e e s t a r t−symbols B
2 context−f r e e syntax
3 A −> B
4 " a " −> A

Figure 6.5 Grammar with chain rules.

START

amb

B

A

PlaceHolder[[A]]

...
“a”

B

PlaceHolder[[B]]

...
“a”

=⇒

START

amb

B

A

“a”

B

A

“a”

Figure 6.6 Chain rule ambiguity and evaluation result.

A as child of B and "a" as terminal. When both branches of the ambiguity are
evaluated, both branches of the ambiguity will contain the same sub parse tree.

A parser used to parse a template should be based on an algorithm supporting
ambiguities, as by nature a template grammar is probably ambiguous. The sup-
port of ambiguities is the reason for the use of a(n) (S)GLR based parser [117],
which constructs a collection of (sub) parse trees in case of an ambiguity. The
SGLR parser automatically constructs a parse tree, where a special amb node is
introduced in case of an ambiguity. This amb node contains the list of possible
valid (sub) parse trees. Other parser algorithms supporting ambiguities such
as the Cocke-Younger-Kasami algorithm [88] can be used, parser algorithms
like LL, LR and LALR [5] cannot be used as they do not support ambiguities.
Ambiguities belonging to the mix of object language and metalanguage must
not be solved during parsing, but stored in the parse tree. These ambiguities
represent different syntactically legal alternatives for the output code. It is
undesired to remove legal alternatives during parsing if not explicitly defined
in the templates.

We use a disambiguation filter based on rewriting [114] to resolve the ambigui-
ties during template evaluation. In order to deal with ambiguities the evaluator
tries to evaluate the different alternatives of the ambiguities with the same
context, i.e. bsttmps and bstvars. The alternatives are evaluated one by one and
at the moment an alternative successfully evaluates, it is used to replace the
ambiguity node. The steps are shown by the equations below. This filter is part



6.8 | Separator Handling 131

of the seval traversal function and matches on ambiguity nodes.

seval(t1, bsttmps, bstvars) 7→ t
seval(amb(t1, . . . , tk), bsttmps, bstvars) 7→ t

seval(t1, bsttmps, bstvars) = ERROR
seval(amb(t2, . . . , tk)) 7→ t

seval(amb(t1, t2, . . . , tk), bsttmps, bstvars) 7→ t

seval(t1, bsttmps, bstvars) = ERROR
seval(amb(t1), bsttmps, bstvars) 7→ ERROR

It is not necessary to evaluate every alternative of the ambiguity when a
successful evaluation is found [25]. Evaluating different ambiguity alternatives
could result in different structures of the parse trees, but the leaves of those
trees contain the same lexical characters. The yielded strings of different
ambiguity alternatives are identical. This fact and the fact that after evaluation
the resulting parse tree is converted to a string, allows to stop evaluating
the ambiguity alternatives after one successful result is found. The evaluator
generates an error when it is not possible to evaluate any of the ambiguity
alternatives successfully.

Although ambiguities could not always be avoided during the construction of
a template grammar, one should carefully select the object language nonter-
minals to extend with placeholders syntax to prevent undesired ambiguities.
The remaining template related ambiguities can be resolved by the algorithm
presented above, but this solution comes with a performance penalty.

6.8 Separator Handling

By design choice, our syntax safe templates are based on SDF [55], a grammar
formalism supporting lists with separators. When a template is evaluated
containing separated lists, it is not automatically guaranteed that the separated
lists in the generated code are syntactical correct. One can write a syntactically
correct template, which generates syntactically incorrect code. Figure 6.7 shows
an example which generates code with a syntax error. The comma at the
second match-rule is parsed as separator. Following the evaluation rules of
the match-replace, this template will generate a terminated list (t, t, t,) instead
of a separated list, while a separated list (t, t, t) is required. In a text-based
context one can solve this problem by introducing a third rule between line
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1 <: match : >
2 <: [ ] =: >
3 <: [ $head , $ t a i l ] =: > <: $head : > , <: $ t a i l : >
4 <: end : >

Figure 6.7 Separated list generation.

2 and 3: <: [ $head ] =:> <: $head $>. This solution is also chosen in the
text-based PICO unparser of Figure 4.7.

In case of syntax safe templates based on SDF, where a verbose parse tree is
available this fix is not necessary. The evaluator uses the information in the
parse tree to fix the separators and guarantee that the separator in a separated
list is correctly applied. The filter checks whether a separated list conforms to
the pattern n1sn2 . . . snk, where n represents an element and s the separator. It
adds or deletes separators in case they are missing or redundant. The same
kind of solution is also used in the ASF evaluator [13].

6.9 Repleo

In order to perform practical validation of the ideas a prototype called Repleo
is implemented based on the presented template grammars and evaluation
strategy. The Repleo evaluator is generic with respect to the object language of
a template grammar. It can be used for every template grammar constructed
following the method of Chapter 4.

The implementation is separated in two components: the SGLR parser includ-
ing the template grammars defined in SDF and the template evaluator. The
template evaluator is written in Java and composed around a tree traversal,
i.e. the seval function. The traversal has a connection with the SGLR parser to
parse strings from the input data in case a substitution placeholder is detected.
The evaluation process is stopped when an error occurs to prevent generation
of syntactical incorrect code. The error handling uses the exception mechanism
provided by Java. When an error is detected an error message is thrown, which
contains the reason of the error and source code location in the template.

6.10 Case Studies

This section discusses examples of syntax safe templates. The first case study
is the reimplementation of the PICO unparser of Section 4.4. The goal of this
reimplementation is to show the benefits of implicit subtemplates.
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In order to show that syntax safe templates are not limited to academic toy
languages, we show three case studies for the industrially used object languages
Java (general purpose programming language), XHTML (website markup
language), and SQL (database query language). The choice of these object
languages is based on their contemporary use in three-tier (web) applications;
Java for the business layer, SQL for the database layer and XHTML for the
presentation layer. Finally we discuss the definition of a template grammar
and a template based on an object language supporting multiple languages.
This example shows an object language based on Java with embedded SQL.

6.10.1 PICO Unparser

As mentioned the syntax safe evaluator provides implicit subtemplates and
separator handling. This reduces the amount of syntax necessary to implement
list generation and tree generation comparing to the textual based templates of
Chapter 4. Figure 6.8 shows the reimplementation of the PICO unparser using
the syntax safe evaluator. Most match-replace placeholders are nested, only
the expr code is defined in a subtemplate, since it is called on three places in
the template and replacing these calls with the code of the subtemplate expr
will result in cloning. After refactoring the definition of the PICO unparser is 9

lines shorter than the text-based template PICO unparser implementation (see
Section 4.4).

6.10.2 Java

The first example of a template with an industrially used object language is
a Java template. This template generates data model classed in Java, i.e. Java
classes with fields accompanied with getters and setters. The template is shown
Figure 6.10. The template grammar used for parsing this template is shown in
Figure 6.9.

The benefits of syntax safe templates are shown by a number of situations
resulting in syntax errors in a text-based template environment in Table 6.1.
This table summarizes errors that could be made in a template as shown in
Figure 6.10 and in the input data as shown in Figure 6.11. There are two
possible causes of syntax errors in a template based generation system. First,
the object code of a template contains syntax errors and the generated code
inherits these errors (errors A and B). Second, the data obtained from the input
data to substitute a placeholder does not syntactically fit into the object code
of the template (errors C, D and E). The first class of errors is usually detected
during parsing the template, the second class of errors will be reported during
the evaluation of the template. Unlike when using Repleo, the errors A and B
are detected while parsing the template and the errors C, D and E are detected
during the evaluation of the template.
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1 template [
2 <: match : >
3 <: program ( de c l s ( $dec l s ) , $stms ) =: >
4 begin d ec lare
5 <: match $dec l s : >
6 <: [ ] =: >
7 <: [ dec l ( $id , $type ) , $ t a i l ] =: >
8 <: $id : > : <: match $type : >
9 <: n a t ura l =: > nat ur a l

10 <: s t r i n g =: > s t r i n g
11 <: n i l−type =: > n i l−type
12 <: end : > ,
13 <: $ t a i l s o r t : ID−TYPE∗ : >
14 <: end : >
15 ;
16 <: match $stms : >
17 <: [ ] =: >
18 <: [ $head , $ t a i l ] =: >
19 <: match $head : >
20 <: assignment ( $id , $expr ) =: >
21 <: $id : > := <: expr ( $expr ) : >
22 <: while ( $expr , $stms ) =: >
23 while <: expr ( $expr ) : > do
24 <: $stms s o r t :STATEMENT∗ : >
25 od
26 <: i f ( $expr , $thenstms , $e lses tms ) =: >
27 i f <: expr ( $expr ) : > then
28 <: $thenstms s o r t :STATEMENT∗ : >
29 e l s e
30 <: $e lses tms s o r t :STATEMENT∗ : >
31 f i
32 <: end : > ;
33 <: $ t a i l s o r t :STATEMENT∗ : >
34 <: end : >
35 end
36 <: end : >
37 ]
38

39 expr [
40 <: match $expr : >
41 <: natcon ( $natcon ) =: > <: $natcon s o r t : EXP : >
42 <: s t r c o n ( $s t rcon ) =: > <: $s t rcon s o r t : EXP : >
43 <: id ( $id ) =: > <: $id s o r t : EXP : >
44 <: sub ( $lhs , $rhs ) =: >
45 <: $ lhs s o r t : EXP : > − <: $rhs s o r t : EXP : >
46 <: concat ( $lhs , $rhs ) =: >
47 <: $ lhs s o r t : EXP : > || <: $rhs s o r t : EXP : >
48 <: add ( $lhs , $rhs ) =: >
49 <: $ lhs s o r t : EXP : > + <: $rhs s o r t : EXP : >
50 <: end : >
51 ]

Figure 6.8 PICO abstract syntax tree unparser (syntax safe).
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1 module Template−Java
2

3 imports Java
4 imports StartSymbol [ " CompilationUnit∗ " CompilationUnit ∗]
5 imports PlaceHolder [ " ID " ID ]
6 imports PlaceHolder [ " Type " Type ]
7 imports PlaceHolder [ " Modifier " Modifier ]
8 imports PlaceHolder [ " ClassBodyDec∗ " ClassBodyDec∗]
9 imports PlaceHolder [ " BlockStm∗ " BlockStm∗]

Figure 6.9 Java template grammar.

1 c l a s s <: model2name1 : > {
2

3 <: model3cons1vis1 : > <: model2name1 : > ( ) { }
4

5 <: match model4 f ie lds1 : >
6 <: [ ] =: >
7 <: [ f i e l d ( $ f i e l d ) , $ t a i l ] =: >
8 p r i v a t e <: $ f i e l d 2 t y p e 1 : > <: $field1name1 : > ;
9

10 <: $ f i e l d 2 t y p e 1 : > <: " get " + $field1name1 : > ( ) {
11 <: match $ f i e l d 1 l o g 3 : >
12 <: t rue =: > System . out . p r i n t l n ( " get " +
13 <: " \" " + $field1name1 +
14 " \" " : >+ " ( ) i s c a l l e d . " ) ;
15 <: end : >
16 re turn <: $field1name1 : > ;
17 }
18

19 void <: " s e t " + $field1name1 : > (
20 <: $ f i e l d 2 t y p e 1 : > value ) {
21 <: $field1name1 : > = value ;
22 }
23 <: $ t a i l : >
24 <: end : >
25 }

Figure 6.10 A Java template.

Substitute by creating error
line

A 1 clss <: model2name1 :> { class misspelled.
B 12 1System.out.println("get" 1System is not a valid identifier.
C 1 class <: model1number1 :> { number not allowed as identifier.
D Input, 3 name("Shop-Client") identifier contains a dash.
E Input, 4 vis("abstract" ) modifier abstract not allowed.

Table 6.1 Possible errors in template and input data.
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1 model (
2 number ( 1 0 4 ) ,
3 name( " Customer " ) ,
4 cons ( v i s ( " publ ic " ) ) ,
5 f i e l d s ( [
6 f i e l d (
7 name( " firstName " ) ,
8 type ( " S t r i n g " ) ,
9 log ( t rue )

10 ) ,
11 f i e l d (
12 name( " lastName " ) ,
13 type ( " S t r i n g " ) ,
14 log ( f a l s e )
15 )
16 ] )
17 )

Figure 6.11 Input Data example for Java Template
of Figure 6.10.

1 module Template−XHtml
2

3 imports XHtml
4 imports StartSymbol [ "XHtml" XHtml ]
5 imports PlaceHolder [ "PCDATA" PCDATA]
6 imports PlaceHolder [ "CDATA" CDATA]
7 imports PlaceHolder [ " Quoted−CDATA" Quoted−CDATA]
8 imports PlaceHolder [ "XHtml−form−content−item∗ "
9 XHtml−form−content−item ∗]

Figure 6.12 XHTML template grammar.

6.10.3 XHTML

XHTML (Extensible Hypertext Markup Language) is a markup language
based on XML and the Hypertext Markup Language (HTML), the language in
which web pages are written. XHTML has a more strict syntax than HTML,
and can be specified using a context-free syntax formalism. Templates are a
common technique to render (X)HTML for web pages in web applications. The
instantiation of a combination grammar for XHTML templates is shown in
Figure 6.12. Based on the same input data of Figure 6.11, we provide a template
to generate a basic XHTML form in Figure 6.13.

A screen shot of the output after evaluation of the XHTML template is shown
in Figure 6.14. For every field in the input data an input field is generated in
the web form.

The use of a template grammar for the template prevents syntax errors in the
object code, such as a space between < and input at line 15 in Figure 6.13.
The syntax safe evaluation results in the guarantee that the output is always a
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1 <!DOCTYPE HTML PUBLIC "−//W3C//DTD XHTML 1 . 0 S t r i c t //EN"
2 " ht tp ://www. w3 . org/TR/xhtml1/DTD/xhtml1−s t r i c t . dtd ">
3

4 <html>
5 <head>
6 < t i t l e > <: model2name1 + " form " :></ t i t l e >
7 </head>
8 <body>
9 <form a c t i o n ="/commit " method=" post ">

10 <: match model4 f ie lds1 : >
11 <: [ ] =: >
12 <: [ f i e l d ( $ f i e l d ) , $ t a i l ] =: >
13 <p>
14 <: $field1name1 : > <br />
15 <input type=" t e x t "
16 name= <: " \" " + $field1name1 + " \" " : > s i z e =" 20 ">
17 </p>
18 <: $ t a i l : >
19 <: end : >
20 <p>
21 <input type=" submit " value=" Submit ">
22 <input type=" r e s e t " value=" Reset ">
23 </p>
24 </form>
25 </body>
26 </html>

Figure 6.13 XHTML Template.

Figure 6.14 Output after evaluation XHTML template.

syntactically valid XHTML document. It can even be used to prevent injection
attacks. This application of syntax safe evaluation is discussed in Section 7.7.
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1 module Template−Sql
2

3 imports Sql
4 imports StartSymbol [ " Sql Id " Sql Id ]
5 imports PlaceHolder [ " Sql Id∗ " { Sql Id " , " }∗ ]

Figure 6.15 SQL combination module.

1 SELECT
2 (
3 <: match model4 f ie lds1 : >
4 <: [ ] =: >
5 <: [ f i e l d ( $ f i e l d ) , $ t a i l ] =: >
6 <: $field1name1 : > , <: $ t a i l : >
7 <: end : >
8 )
9 FROM <: model2name1 : >

Figure 6.16 SQL Template.

6.10.4 SQL

SQL is a language in the domain of information systems for expressing
database queries. The Listing 6.15 shows the combination module definition
for parsing templates for SQL select statements.

The next example shows an SQL select statement template in Figure 6.16. This
template can also be evaluated using the input data of Figure 6.11. The result
of the evaluation of the SQL template is

SELECT (firstName, lastName) FROM Customer

6.10.5 Multi-language Templates

We have shown a number of examples of instantiating a template grammar for
different industrially used object languages. Sometimes program fragments
contain multiple programming languages, like a general purpose language
with an embedded domain specific language. The language containing foreign
language artifacts is called the host language and the embedded language is
called guest language. Usually these guest language fragments are embedded
in strings, and considered as data in the host language. A compiler of the host
language is usually not equipped to check the correctness of the embedded
guest language code. The aim of this section is to show that syntax safe
templates, where the object language is based on multiple sub languages,
generates correct sentences with respect to all the the sub languages of the
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1 c l a s s CustomerDao {
2 publ ic C o l l e c t i o n getCustomers ( ) {
3 C o l l e c t i o n items = new java . u t i l . ArrayList ( ) ;
4 SQL q = <| SELECT ( firstName , lastName )
5 FROM Customer | >;
6 R e s u l t S e t r s = con . query ( q . t o S t r i n g ( ) ) ;
7 t r y {
8 f o r ( ; r s . next ( ) ; ) {
9 Customer item = new Customer ( ) ;

10 item . set f i rs tName (
11 r s . g e t S t r i n g ( " firstName " ) ) ;
12 item . setlastName (
13 r s . g e t S t r i n g ( " lastName " ) ) ;
14 i tems . add ( item ) ;
15 }
16 } ca tch ( SQLException e ) {
17 e . p r i n t S t a c k T r a c e ( ) ;
18 System . e x i t ( 1 ) ;
19 }
20 re turn items ;
21 }
22 }

Figure 6.17 Java with SQL code inside quotations.

object language. First we discuss StringBorg, an approach for guaranteeing
that multiple languages in a program are syntactical correct.

StringBorg [25] is an approach solving the limitation of a compiler not sup-
porting multiple languages. The system is able to check a host language
with embedded guest language code. Quotations (<| ... |>) are used to
switch from the host language, to the guest language(s), and anti-quotations
(&{ ... }) to go back to the host language. StringBorg prevents that guest lan-
guage artifacts from being syntactically incorrect and the approach especially
aims at providing protection against injection attacks. A common example is a
general purpose language, like Java, containing database queries expressed in
SQL. Figure 6.17 shows a Java listing with embedded SQL using StringBorg to
ensure syntactical correctness of both languages.

The consequence of using code with quotations is that the code cannot be
compiled and/or executed without a tool interpreting these quotations. It is
desirable to keep the build environment with as less as possible tools, since
all these tools must be maintained. We present an approach introducing static
syntax safety1 for guest language fragments without adding new constructs to
the syntax of the original host language. This can be achieved by a defining
a grammar configured to detect guest languages without the quotations. We
present an approach where the quotations are defined as function signatures
in the host language. This approach is based on the assumption that most

1 Static means that runtime injection of code into strings is not verified, we only check the
correctness of the static defined code. In case of the JDBC this can be solved using prepared SQL
statements, which remove the possibility of SQL injection.
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1 module Java−Sql
2 imports Sql
3 imports Java
4 exports
5 s o r t s SqlMethod SqlExpr MethodName
6 context−f r e e syntax
7 SqlMethod " ( " SqlExpr " ) " −> Expr { p r e f e r }
8 SqlMethodName −> SqlMethod
9 SqlMethodName −> ID { r e j e c t }

10 AmbName " . " SqlMethodName −> SqlMethod
11 " prepareStatement " −> SqlMethodName
12 " \" " Query " \" " −> SqlExpr

Figure 6.18 Combining Java and SQL.

guest language sentences are specified in an API function call. For example,
most Java environments use JDBC [109] to establish a connection to a database.
The guest language syntax is embedded in the host language grammar by
adding a specialized function signature for the generic function signature in
the grammar. This approach is less flexible than the StringBorg with respect to
the places where guest language fragments can be defined. However, it adds no
new language constructs to the host language, so no extra tooling is necessary
to compile and execute the code. Furthermore, our approach does not prevent
against dynamic injection attacks when running the generated code, but only
finds errors in the static defined code. Still it is useful to guarantee that all
code generated by a template is syntactically correct.

The grammar of Figure 6.18 shows the embedding of SQL in Java. It inserts
a special grammar rule for the function prepareStatement. It is necessary
that the function prepareStatement cannot be parsed as a normal function
call. A reject rule is specified at line 9 to specify prepareStatement as a
preferred keyword [23]. The Java-Sql grammar is able to parse Java with
embedded SQL code in the prepareStatement function without adding new
language constructions. The connection between the host language and the
guest language should be based on API calls or other natural transition points.
Some effort is needed to define a grammar module for this connection and to
maintain it when the API changes. However API’s such as JDBC do not change
often or maintain backward compatibility [7].

Syntax safety for all language fragments is also crucial for templates. Syntax
errors in guest language fragments of a template can easily remain undetected
until runtime. The compiler of the host language does also not check the
guest language fragments. From a grammar perspective the Java-Sql can be
seen as a new language, in other words the union of languages results in a
new language. This new language can be extended with placeholders in the
same way as the original languages. The syntax safe template evaluator will
guarantee that its output is a sentence of this new language, i.e. all the sub
languages of the output are syntactical correct. Figure 6.19 shows the template
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1 module Template−Java−Sql
2

3 imports Java−Sql
4 imports StartSymbol [ " CompilationUnit∗ " CompilationUnit ∗]
5 imports PlaceHolder [ " ID " ID ]
6 imports PlaceHolder [ " Type " Type ]
7 imports PlaceHolder [ " Modifier " Modifier ]
8 imports PlaceHolder [ " ClassBodyDec∗ " ClassBodyDec∗]
9 imports PlaceHolder [ " BlockStm∗ " BlockStm∗]

10

11 imports PlaceHolder [ " Sql Id " Sql Id ]
12 imports PlaceHolder [ " Sql Id∗ " { Sql Id " , " }∗ ]

Figure 6.19 Java-SQL template grammar.

1 c l a s s <: model2name1 + "Dao" : > {
2 publ ic C o l l e c t i o n <: " get " + model2name1 + " s " : > ( ) {
3 C o l l e c t i o n items = new java . u t i l . ArrayList ( ) ;
4 R e s u l t S e t r s = con . prepareStatement (
5 "SELECT ( < : match model4 f ie lds1 : >
6 <: [ ] =: >
7 <: [ f i e l d ( $ f i e l d ) , $ t a i l ] =: >
8 <: $field1name1 : > , <: $ t a i l : >
9 <: end : >) FROM <: model2name1 : > " ) ;

10 t r y {
11 f o r ( ; r s . next ( ) ; ) {
12 <: model2name1 : > item = new <: model2name1 : > ( ) ;
13 <: match model4 f ie lds1 : >
14 <: [ ] =: >
15 <: [ f i e l d ( $ f i e l d ) , $ t a i l ] =: >
16 item . < : " s e t " + $field1name1 : > (
17 r s . g e t S t r i n g ( < : " \ " " + $field1name1 + " \ " " : > ) ) ;
18 <: $ t a i l : >
19 <: end : >
20 i tems . add ( item ) ;
21 }
22 } ca tch ( SQLException e ) { . . . }
23 re turn items ;
24 }
25 }

Figure 6.20 Java-SQL template.

grammar for Java-Sql templates.

Figure 6.20 shows a Java-Sql template. This template can also be evaluated
using the input data of the Listing 6.11. The result after evaluating the template
is listed in Figure 6.21.

The generated code can be compiled without a special preprocessor and both
host language code and guest language code are guaranteed to be syntacti-
cally correct. The template evaluator detects syntax errors in both languages,
since the grammar contains production rules for both. For example, an error
is generated when an identifier fits in a Java placeholder but not in an SQL
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1 c l a s s CustomerDao {
2 publ ic C o l l e c t i o n getCustomers ( ) {
3 C o l l e c t i o n items = new java . u t i l . ArrayList ( ) ;
4 R e s u l t S e t r s = con . prepareStatement (
5 "SELECT ( firstName , lastName )
6 FROM Customer " ) ;
7 t r y {
8 f o r ( ; r s . next ( ) ; ) {
9 Customer item = new Customer ( ) ;

10 item . set f i rs tName (
11 r s . g e t S t r i n g ( " firstName " ) ) ;
12 item . setlastName (
13 r s . g e t S t r i n g ( " lastName " ) ) ;
14 i tems . add ( item ) ;
15 }
16 } ca tch ( SQLException e ) { . . . }
17 re turn items ;
18 }
19 }

Figure 6.21 Result of evaluation of Java-SQL template.

placeholder. This property forces us to use the greatest common divisor of the
character classes of the Java identifiers and SQL identifiers in the input data.
The advantage of using an object language grammar containing production
rules for embedded languages is that sentences of these sub languages con-
structed during code generation are syntax safe. It is not an obstacle to use an
object language based on multiple unified context-free languages, since syntax
safe template evaluation only requires that the object language is context-free.

6.11 Related Work

The related work is separated in two sections. First, the related work on
the topic of syntax safe templates is discussed. Second, other approaches of
embedded languages are discussed.

6.11.1 Syntax Safe Templates

Two recent approaches for syntax safe templates are presented by Heidenreich
et al. [57] and Wachsmuth [122]. The approach of Heidenreich et al. [57] is
based on abstract syntax of templates. Heidenreich et al. designed a syntax safe
template approach based on meta models. Meta models define the abstract
syntax grammar of the template language and models are instantiations of
these templates, comparable to an abstract syntax tree of a template. These
meta models even allows one to go beyond syntax safety and perform some
static semantic checking. However, a couple of problems are ignored when
considering syntax safe template evaluation. First, Heidenreich et al. do not
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discuss a clear approach to handle ambiguities and leave this problem to
the template grammar developer every time a new object language model is
extended with metalanguage artifacts. Furthermore, the template evaluator
uses models, i.e. a form of abstract syntax trees, and as a result no whitespace
and other layout information is available. This can be a problem when layout
sensitive code must be generated. Finally an unparser is necessary to transform
a generated object language model into text. This unparser is automatically
generated, but it is not by default ensured that the output is syntax safe.

Another approach is presented by Wachsmuth [122]. He discusses an approach
to extend a target language grammar with metalanguage artifacts in order to
obtain a template grammar, which guarantees syntax safe generation of code.
It is similar to the constructing a template grammar discussed in Theorem 5.2.3.
The approach of Wachsmuth statically enforces syntax correctness, since sub-
stitution placeholders are not supported and thus all output code is already
defined in the template. Hence the relation with Theorem 5.2.3. This approach
does not allow having substitution placeholders replacing themselves by string
values from the input data. Substitution placeholders are not necessary for
unparser-completeness (see Theorem 4.3.7). However, a metalanguage without
substitution placeholders is less flexible in use, since the behavior of the substi-
tution placeholder must be captured in a combination of match-replace like
placeholders and subtemplates (see Section 4.3.5).

6.11.2 Embedded Languages

Embedding one computer language in another computer language is not a
new phenomenon. Most times the embedded languages are considered as data,
most times typed as strings. Several approaches go beyond handling these
embedded languages as strings. StringBorg [25] is a system to to embed guest
languages in a host language to provide a solution against injection attacks
for arbitrary languages. StringBorg is the successor of MetaBorg [26]. It adds
quotations to the grammar to indicate a switch between the host language and
the guest language. The quotations are also the limitation of StringBorg; Source
code must first be processed by StringBorg before it can be processed by the
original compiler. In our approach of embedding languages the quotations are
omitted. This allows us to compile the source code using the original compiler.

MetaBorg is a system to embed a guest language in a host language. It translates
the guest language fragments into host language fragments. MetaBorg does
not use explicit hedges to indicate the transitions between host language and
guest language. The requirements for MetaBorg differ from our needs. We
are not interested in expanding the embedded languages, but only in the
syntactical correctness of the embedded code. Furthermore, we want to check
the embedded language in the context where it is used in the host language.
This is achieved by using function calls as quotations.
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Another approach to embed a language is domain specific embedded compil-
ers [79]. This is a technology to express a domain specific language, such as
HASKELL/DB, in a high order typed language like Haskell. HASKELL/DB is
a proprietary language to express database queries in Haskell, which are trans-
lated to SQL. The HASKELL/DB fragments are checked for syntax correctness
and type correctness. The type safety is obtained by introducing phantom types
for the guest language. Phantom typing is a technique to create annotations
containing type information for the nonterminals in the parse tree of the
HASKELL/DB code. This allows the Haskell type system to check the type
correctness of the embedded language. The use of a proprietary language for
SQL makes this concept less easy to use and maintain than a system based on
the concrete syntax of SQL.

6.12 Conclusions

In this chapter we have presented syntax safe template evaluation. Syntax safe
templates provide a mechanism to detect syntax errors during the generation of
the code, instead of dealing with syntax errors at compile time. It prevents that
placeholders in a template are replaced by syntactical incorrect sentences. The
output code of a syntax safe template evaluator is a sentence of the intended
output language.

The evaluation strategy is not dependent on the object language and does not
need to be changed when another object language is used. It is even possible
to use object code containing multiple languages.

We have implemented the presented approach in a prototype called Repleo.
This prototype is used to validate the presented approach in a few case studies.
In Chapter 7 we present a number of realistic case studies using Repleo.
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Case Studies

B
eside the theoretical discussion of templates, empirical validation is neces-

sary to show that the ideas indeed work in practice. This chapter discusses
the validation of the discussed syntax safe template evaluator by means
of four case studies. These case studies show different aspects of the use

of templates. A typical three tier web application is generated from a data model. Two
case studies show a reimplementation of an existing code generator. The reimplemented
code generators use a separated model transformation, resulting in less code and better
maintainable code. Finally the use of syntax safe templates is shown for dynamic web
page generation. Syntax safe templates provide a solution against cross-site scripting
attacks.

7.1 Introduction

In the previous chapters we introduced (syntax safe) templates. This chapter
discusses an empirical validation of the presented syntax safe template evalua-
tor. The implementation of the syntax safe template evaluator Repleo is used
for these case studies.

The case studies were chosen to show that our metalanguage in combination
with the two-stage architecture, discussed in Section 7.2, results in better
maintainable code and to show the benefits of syntax safety. We divided the
case studies in four topics, covering different domains where code generation
is used. Metrics, presented in Section 7.3, are used to provide indication of
the size and complexity of case studies. We will use the results to compare
the different case studies in the conclusions. The first case study discusses the
generation of web applications back-ends in Section 7.4. The generated code is
based on a three tier MVC architecture, the code generator must instantiate
code for the different layers expressed in different languages from a single
input model. The second case study, see Section 7.5, is the reimplementation
of ApiGen [90]. ApiGen is an application to generate a Java API for creating,
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manipulating and querying tree-like data structures represented as ATerms. It
covers the generation of Java code based on the Factory pattern and Composite
pattern [45]. The third case study, see Section 7.6, is the reimplementation
of NunniFSMGen1. NunniFSMGen is a tool to generate finite state machines
from a transition table. It covers the generation of behavioral code based on
the state design pattern [45] for different output languages. These three case
studies are used to validate that the use of a two-stage architecture results in
better separation of concerns. The final case study, presented in Section 7.7,
shows that syntax safety can improve the safety of dynamic code generation in
web applications. It covers code generation during the usage of an application,
where syntax safety is used to reduce the possibility of security bugs.

We conclude this chapter with an overall conclusion. First, we start with the
discussion of different implementation architectures of code generators used
by the case studies.

7.2 Code Generator Architectures

We discuss three architectures used for implementing code generators. These
architectures are used by both the original code generators and the reimple-
mented code generators. The first is the single-stage architecture. We continue
with the two-stage architecture. It is based on two translation steps, where
the input data is first translated to an intermediate representation before the
final output code is generated. The two-stage architecture is used by all our
implementations of template based code generators. The last discussed archi-
tecture is the model-view-controller architecture. This is a frequently applied
architecture, also used for (web) applications generating code, where the tem-
plate evaluator is used in the view component. The first case study generates
code based on the model-view-controller architecture and the last case study
uses templates to implement the view component. We discuss the architectures
with their advantages and disadvantages.

7.2.1 Single-Stage Generator

The single-stage generator architecture is a basic implementation of a code
generator. This architecture is easy to implement when starting with a new
code generator. All processing and calculations are performed in a single
module, without the use of an intermediate representation. The code generator
directly emits code when parsing the input model.

The single-stage architecture has the drawback that the code is less maintain-
able and less reusable. Intermediate results and functions are not available

1 http://sourceforge.net/projects/nunnifsmgen/ (accessed on November 30, 2010)

http://sourceforge.net/projects/nunnifsmgen/


7.2 | Code Generator Architectures 147

Input data
Code

generator

Generated

code

Figure 7.1 Single-stage architecture.

Input data
Trans-

former

Intermediate

format

Code

generator

Generated

code
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for reuse. The same calculations are performed every time they are necessary.
Caching results of calculations will break the single-stage architecture, as the
cached result is a kind of intermediate representation. Another side effect of
this architecture is that code cloning can easily occur. At the moment the same
calculations are necessary at different moments, it will result in a code clone.
The single-stage architecture does not allow combining these code clones in a
model transformation stage. Debugging is also more difficult, since everything
is done in one phase and code cannot be tested in isolation. Figure 7.1 shows a
visual representation of the single-stage architecture.

7.2.2 Two-Stage Generator

The two-stage architecture is based on two translation steps, where the input
data is first translated to an intermediate representation before the final output
code is generated. This architecture separates the code generation process in
two (or possibly more) stages, namely a so called model transformation stage
and the code emitting stage. The intermediate representation is used by the
code emitter stage. In our case studies this code emitter stage is implemented
as a set of templates in combination with a template evaluator. The model
transformation stage is considered as one mapping, but depending on the
necessary refining, it can be implemented using a number of sub mappings.
Figure 7.2 shows the corresponding two-stage architecture.

In a two-stage generator, the translation of input model to output code is
distributed over two components, namely a model transformation and code
emitter(s). It is plausible that the input data, for example a list, tree, graph or
concrete text, is most times compact without redundant information and that
it has a higher level of abstraction than the generated output code. The greater
the distance between the level of abstraction of the input data and the level
of abstraction of the output code, the more calculations are needed to process
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the input data in order to construct the output code. In case multiple code
emitters are used for generating the output code, a single-stage generator is
implemented as a set of separated code generators using the same input model.
It is likely, that this set of code generators share code clones, since the same
distance between the levels of abstraction needs to be bridged. Compared to
the single-stage architecture, the use of a two-stage architecture allows one
to reduce the number of code clones in the generator code by combining
frequently used calculations in the model transformation stage. The model
transformation calculates an intermediate representation of the input data,
which is used by the code emitters. The code cloning is reduced by specifying
the non output language specific calculations in the model transformation.

It should be the aim to design the intermediate representation at a level of
abstraction that it is not output language specific. When the intermediate repre-
sentation does not contain output language specific information, it is possible
to use it for multiple output languages. On the other hand, the intermediate
representation should be close enough to the level of abstraction of the output
code. At that point of abstraction, the code emitters act as a render component
with minimal calculations, while the intermediate representation is still not
output language specific. When the level of abstraction of the intermediate
representation is too high, it is necessary to perform model transformation
calculations in the code emitters, possibly resulting in clones between multiple
code emitters. Although the intermediate representation should not contain
output language specific artifacts, the intermediate representation can already
be paradigm specific or has specific requirements of concepts, which an out-
put language should support. For example, the intermediate representation
implements a design pattern which can only be implemented using an object-
oriented programming language.

The use of a two-stage approach is already a common architecture for imple-
menting compilers [4, 5, 3]. For example, the GCC compiler2 processes the
input code and translates it to a representation belonging to the register transfer
language. The register transfer language is the intermediate representation
of GCC and is used to separate the compiler front-ends from the compiler
back-ends. The intermediate representation is translated to assembler by the
back-end of GCC. The register transfer language representations are still inde-
pendent of the final target processor, so it can be used for different compiler
back-ends for different processors.

7.2.3 Model-View-Controller Architecture

The model-view-controller architecture (MVC) [78] describes a decomposition
of an application in three parts: model, controller and view, with their specific
responsibility. It has a strong aim for separation of concerns, which improves

2 http://gcc.gnu.org (accessed on November 30, 2010)

http://gcc.gnu.org
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Figure 7.3 Model-view-controller architecture.

re-usability and maintainability. The model is responsible for actually executing
the calculations for the application domain and is distinct of the controller and
view part of the application. The controller is used to send messages to the
model, and provides the interface between the model with its associated views
and the interactive user interface devices. The view deals with everything
graphical on screen, printer, files and other devices, i.e. the output of the
application. It uses data from the model component to render the output
screen.

An MVC based application consists of a model and can have one or more
views and controllers associated with it. The re-usability of the model is
improved when it does not have knowledge of the views and controllers of the
application, only the views and controllers need to have knowledge about their
model explicitly. Figure 7.3 provides a visual sketch of the MVC architecture.

The original discussion of the MVC architecture [78] considers an end-user
application, where the view is a (graphical) user interface and the controllers
handle direct user input via keyboard or mouse. Beside the original context, the
MVC architecture also fits for services generating code, like web applications.
In MVC based web applications, the controller handles the requests and the
views return generated HTML pages, PDF documents, etcetera. Often this
view component of a web application is implemented as a template evaluator
combined with templates.

The MVC architecture is used in the case studies of Section 7.4 and Section 7.7.
The first case study discusses a code generator, where its output code is based
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on the MVC architecture. The last case study presents an MVC based web
application using the syntax safe template evaluator for rendering the view.

7.3 Metrics

We present a couple of metrics in order to measure the volume of the code
produced in the case studies and to quantify the readability of the code. The
metrics are used to compare the size of all case studies. In the case studies
of Section 7.5 and Section 7.6, they are also used to compare the original
implementation and the reimplementation on a quantitative level.

The selected metrics are to indicate the volume of the code. The volume is
measured using the lines of code metric. It gives a rough indication of the size
of the code. The lines of code metric does not give accurate information about
the amount of text in the source code, therefore the number of tokens is also
counted.

Meta-programs have by nature a lot of non-alphanumeric characters to switch
from object code to meta code and vice versa. These characters mainly influence
the readability of the code. In order to quantify the readability of the code the
number of non-alphanumeric characters used in the code is measured.

Tokens are counted instead of characters to measure the volume of the code.
They abstract from the length of identifiers, as they are parsed as one token,
otherwise the length of the identifiers could influence the comparison. The
tokens are defined by four lexical classes, see the grammar of Figure 7.4 for
the definition of them. The lexical classes are

� ID - detects identifiers and keywords in Java, C, SDF, ASF and shell
scripts;

� Bracket - detects brackets, and initializes a token per bracket;

� NonID - detects non-alphanumeric character sequences, excluding brack-
ets;

� WS - detects sequences of white space characters.

The grammar of Figure 7.4 is used to parse the source code of the code
generator implementations. The result of the parser is a parse tree with a root
node Tokens and for each token a child node. A function is defined iterating
over this list of tokens, while counting the number of the different tokens. The
number of non-alphanumeric characters is the sum of the number of Bracket
tokens and NonID tokens. They are parsed as different nonterminals, since
Bracket detects single characters and NonID detects the longest match for a
character sequence.
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1 module Tokens
2

3 exports
4 s o r t s Text Bracket NonID ID WS
5 context−f r e e s t a r t−symbols Text
6 context−f r e e syntax
7 ( Bracket | NonID | ID | WS)∗ −> Text
8

9 l e x i c a l syntax
10 [A−Za−z0−9\∗\ ’\$ ]+ −> ID
11 [\"\{\}\[\]\ <\ >\(\)] −> Bracket
12 ~[\"\{\}\[\]\ <\ >\(\)\ \ t \n\rA−Za−z0−9\∗\’\$ ]+
13 −> NonID
14 [\ \ t \n\r ]+ −> WS
15

16 context−f r e e r e s t r i c t i o n s
17 NonID −/− ~[\"\{\}\[\]\ <\ >\(\)\ \ t \n\rA−Za−z0−9\∗\’\$ ]
18 WS −/− [\ \ t \n\r ]
19 ID −/− [A−Za−z0−9\∗\’\$ ]

Figure 7.4 Grammar for token counter.

These metrics have a lot in common with the Halstead complexity metrics [50],
based on the number of (distinct) operands and (distinct) operators. Unfortu-
nately, we could not directly use these metrics in our case as we have a meta
code and object code. It is not clear how to define operands and operators
in a meta programming situation. Considering the object code fragments as
operands is not sufficient. Our metrics are on a basic lexical level, where we
do not consider the differences between metalanguage and object language.

7.4 A DSL for Web Information Systems

This section discusses an industrial case study using Repleo as template
evaluator3. The topic of this case study is the generation of modules for a
web-based information system. It has been carried out at MarketMind B.V.4 in
the context of a web application framework called WebManager. WebManager
is a framework providing a plug-in based architecture for web application
modules. These modules are model-view-controller based applications, which
can be developed independently of each other.

The WebManager framework allows some reuse (on a modular level) and
increases the ease of maintenance, but the company is still not satisfied about
productivity. The problem of writing and maintaining WebManager modules is
the amount of boilerplate code necessary to define them. When customers need

3 This work is in detail discussed in the thesis of Smeets [105].
4 http://www.marketmind.nl (accessed on November 30, 2010)

http://www.marketmind.nl
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custom made modules to fit their needs it can be hard to offer a competitive
price.

This case study investigates the possibility to use code generation to instantiate
a WebManager module from a specification and to get rid of manually writing
this boilerplate code. Since a WebManager module is based on a three tier
MVC architecture, the code generator should instantiate code for the different
layers expressed in different languages. This case study shows that syntax safe
templates can be used to generate code for multiple output languages from a
single input model. We give a brief overview of the approach.

7.4.1 Introduction

The domain specific language WebManager Specification Language (WMSL) is
designed to specify web applications intended to be based on the WebManager
framework of MarketMind. The code generator instantiates WebManager
modules from a WMSL definition. A WebManager module is a 3-tier web
application, containing a view, controller and a database component.

The WebManager Specification Language is a proprietary formalism specially
designed for specifying WebManager modules. It is based on a textual represen-
tation of an entity–relationship model extended with a number of WebManager
specific features. An example of such a WebManager feature is the support of
localization of fields5, like the text field of an article entity must be available
in English and Dutch. An example WMSL specification is given in Figure 7.5.
It declares an Article entity and Author entity with a number of fields. The
primary key is the field marked with a hedge #. The relationship between the
entities article and author is explicitly expressed by the relationship block.

A WMSL specification is translated to a database definition in SQL, a data
access layer and data transfer layer, both implemented in C#. The data access
layer contains the API to query the database. The data transfer layer provides
the classes, based on the entities in the model, to hold the records of the
database.

The implementation of the WMSL code generator is based on the two-stage
architecture. First, the WMSL specification is refined using a couple of interme-
diate steps to obtain the input data for the templates. These transformations
calculate the implementation of WebManager features and paradigm mis-
matches between the WMSL and the final target platform. An example of
a paradigm mismatch is the support of many–to–many relations in WMSL,
which cannot direct be specified in a database model. Figure 7.6 gives an
overview of these transformations. The model transformations already fork the
input data in branches for the different layers. This forking is necessary since

5 Localization is the ability of translating a value into different natural languages for a specific
country or region.
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1 Module News
2 {
3 E n t i t y A r t i c l e
4 {
5 A r t i c l e I d [ # ] : B i g I n t ;
6 T i t l e : S t r i n g ;
7 Text : S t r i n g ;
8 }
9

10 E n t i t y Author
11 {
12 AuthorId [ # ] : B i g I n t ;
13 AuthorName : S t r i n g ;
14 }
15

16 Rela t ionsh ip Art ic leAuthor
17 {
18 A r t i c l e : n ? ;
19 Author : 1 ? ;
20 }
21 }

Figure 7.5 News article web module specification.

the layers are implemented using different platforms, not sharing the same
expressiveness. For example, the data transfer model is finally implemented
in C#, supporting many–to–many relations, while relational databases only
support one–to–many relations. First the WMSL specification is normalized,
like calculating canonical names for the entities. This normalized model is
directly used for instantiating the input data for the data access layer. For the
data access layer and database definition the normalized model is transformed
to a so called logical data model. The main task of this transformation is to
translate many–to–many relationships to two one–to–many relationships using
an auxiliary table. Finally, this logical data model is used to instantiate the
input data for the templates generating the database description and the data
access layer.

For the generation of the three layers, i.e. the database, data access layer
and data transfer layer, a set of templates is defined. The refined models, i.e.
physical data model, data access model and data transfer model, are used as
input data for these templates. From the physical data model SQL statements
are generated. From the data access model the data access layer is generated,
in this case C# code. From the data transfer model the data transfer objects are
generated that are used in the front-end libraries and the web services layer.
Figure 7.7 shows a snippet of the physical data model for the news article of
Figure 7.5.

The input data for the templates are the abstract syntax trees resulting from
parsing the refined models. The abstract syntax tree of the physical data
model example is shown in Figure 7.8. It is obtained by parsing the listing
of Figure 7.7. The structure of the abstract syntax tree is important for the
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Figure 7.6 Code generation for web manager architecture.

1 Module News
2 {
3 + E n t i t y News . A r t i c l e [ ]
4 {
5 A r t i c l e I d [ # ] : B i g I n t ;
6 T i t l e [ ] : S t r i n g ;
7 Text [ ] : S t r i n g ;
8 # News . A r t i c l e . A r t i c l e I d ;
9 }

10 }

Figure 7.7 Physical data model for the news
article of Figure 7.5.

template implementation as the meta code in the templates traverses it.

The code generation from WSML to a WebManager module is straightforward.
The entities defined in the WSML are one-to-one implemented in the generated
database definition and C# code, surrounded with the necessary boilerplate
code. Complex recursive structures are not necessary to implement the WSML
model; as a result the templates are trivial. This is not typical for this case
study, but also EJBGen, a similar case study discussed by Herrington [58],
contains quite trivial templates.

Even though the templates are straightforward, we highlight an example from
the templates that are used to generate the SQL code for creating tables in a
database. These templates use a physical data model as input, for example
the model of Figure 7.8. The SQL template file is shown in Figure 7.9. The
match-replace placeholder is used to match the Module node in the input data.
The variable $module is assigned to the string “News", and the variable $defs
is assigned to the list that is the second argument of the Module node. In this
example this list contains exactly one element. The text shown in the template
is written to the output file with the name DataModel.$module.sql, where
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1 Module (
2 ModuleName ( " News " ) ,
3 [
4 CreateEnt i ty (
5 E n t i t y (
6 ModuleName ( " News " ) ,
7 E n t i t y I d ( " A r t i c l e " ) ,
8 [ ] ,
9 [

10 A t t r i b u t e (
11 AttributeName ( " A r t i c l e I d " ) ,
12 Attr ibuteOpt ions (
13 [ AttributeOptionPrimaryKey ] ) ,
14 BigIntType ) ,
15 A t t r i b u t e (
16 AttributeName ( " T i t l e " ) ,
17 Attr ibuteOpt ions ( [ ] ) ,
18 StringType ) ,
19 A t t r i b u t e (
20 AttributeName ( " Text " ) ,
21 Attr ibuteOpt ions ( [ ] ) ,
22 StringType ) ,
23 PrimaryKeyConstraint (
24 ModuleName ( " News " ) ,
25 E n t i t y I d ( " A r t i c l e " ) ,
26 AttributeName ( " A r t i c l e I d " )
27 )
28 ]
29 )
30 )
31 ]
32 )

Figure 7.8 AST of the physical data model from Figure 7.7.

$module is replaced with its value “News". The subtemplate call to the stm
template passes the data of the variable $defs into the subtemplate.

The subtemplate stmcreateentity, see Figure 7.10, is called by the subtem-
plate stm. The Entity node is passed to this subtemplate and used in the
match-replace placeholder to be matched against. Considering Figure 7.10, the
variables $m and $i are matched against the input term and inserted into the
CREATE TABLE statement. The tabledefs subtemplate generates the column
names for the SQL statement from the attributes in the entity.

7.4.2 Evaluation

This case study showed that the proposed two-stage architecture and syntax
safe templates are a fruitful combination to define a code generator for generat-
ing a three-tier web application. It is used for generating a couple of prototype
applications, including a news site and a simple content management system.
With respect to the current prototype implementation of the WMSL generator
there are a number of things yet to be done. First and foremost Market Mind



156 Case Studies

1 <: match : >
2 <: Module (ModuleName( $module ) , $defs ) =: >
3 template [
4 DAL/ <: $module : >/ <: " DataModel . " + $module + " . s q l " : > ,
5 BEGIN TRANSACTION;
6 GO
7 . . .
8 <: stm ( $defs ) s o r t : Stm∗ : >
9 COMMIT TRANSACTION;

10 GO
11 ]
12 <: end : >

Figure 7.9 Template for SQL code generation.

1 s t m c r e a t e e n t i t y [
2 <: match : >
3 <: E n t i t y (ModuleName($m) , E n t i t y I d ( $ i ) , $opts , $ a t t r i b s ) =: >
4 CREATE TABLE [ < : $m : > ] . [ < : $ i : > ]
5 (
6 <: t a b l e d e f s ( $ a t t r i b s ) s o r t : TableDef∗ : >
7 )
8 <: end : >
9 ]

Figure 7.10 Subtemplate that generates the create table statement.

would like to see that the WebManager modules are fully generated, including
the view component.

Table 7.1 shows the metrics of the WMSL code generator implementation.
We measured all 32 files of the original WMSL implementation, including
the templates, and the grammars and rewrite rules belonging to the model
transformation.

Metric WMSL

Lines of Code 2,956

Lines of Code (without blank lines) 2,435

Tokens 34,638

Alphanumeric tokens 9,792

Non-alphanumeric tokens 14,483

White space tokens 10,363

Average number of tokens per line 14,23

Average number of non-alphanumeric tokens per line 5,95

Table 7.1 Metrics of WMSL code generator.
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The metalanguage of the templates was not experienced as a limitation for the
applicability of the templates for implementing the code generators for the
different layers of a web application. It enforced the code generator developer
to separate calculations from the specification of the view. Furthermore, having
syntax safe templates enables the use of syntax highlighting in the template
editor and detecting of misspelling while writing templates.

7.5 ApiGen

This case study covers the reimplementation of the Java back-end of Api-
Gen [90]. ApiGen [90] is a tool to generate a Java or C API for creating, ma-
nipulating and querying tree-like data structures represented as ATerms [22].
This case study uses the two-stage architecture and syntax safe templates in
the setting of a complex code generator, since the Java back-end of ApiGen
generates non-trivial Java code based on the Factory pattern and Composite
pattern [45]. Furthermore having an old implementation and reimplementation
allows us to compare them. We expect that the reimplemented code generator
provides better separation of concerns and is more compact than the original
implementation. The better separation of concerns is demonstrated by means
of a code example. Metrics are used to show that the reimplemented code
generator is indeed more compact.

7.5.1 Introduction

ApiGen finds its origin in the ASF+SDF Meta-Environment [21], an interac-
tive development environment for program analysis and transformations.
The ASF+SDF Meta-Environment provides various language processing com-
ponents, such as a parser and a term rewrite engine. Data between these
components is exchanged via ATerms, where these components expect that
ATerms belong to a certain regular tree grammar. This regular tree grammar
was not explicitly defined, but dictated by manually specified functions in an
application programming interfaces (API) accepting the ATerm. Synchroniz-
ing these manually defined API’s for the various components is a complex
maintenance issue [90].

De Jong et al. [90] discuss an approach to remove this maintenance problem
by generating an API for ATerms from a regular tree grammar or concrete
syntax definition (SDF). ApiGen translates a regular tree grammar, specified in
a format called annotated data-type or in short ADT, to an API for manipulating,
reading and creating ATerms belonging to the language of the regular tree
grammar. Generating an API from the ADT removes the need of error-prone
handcrafted ATerms. The generated API also provides more safety when
manipulating trees, since the node objects are not typed as a generic node, but
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Figure 7.11 Overview of an application before and after introduction of a generated API.(From [90])

typed as its alternative, which is a subclass of its producing nonterminal. A
schematic overview is shown in Figure 7.11. This figure also shows that an
ADT can be derived from an SDF specification. The translation of SDF to ADT
is out of the scope of this case study and we use the original tool sdf2-to-adt
in order to generate an ADT from an SDF grammar.

7.5.2 Annotated Data Type

The input for ApiGen is the so called annotated data type, in short ADT. The
ADT format is a formalism to define a set of legal ATerms, just like schema
formalisms such as Document Type Definition and XML Schema for XML docu-
ments [14]. It can be considered as a regular tree grammar formalism, allowing
trees with infinite arity [86]. Trees with infinite arity may contain symbols used
with different arities, while the symbols in the previously discussed trees have
a fixed arity. The ADT format finds it origin as an intermediate representation
between an SDF definition and the generated API for manipulating parse trees
belonging to that SDF definition. Therefore only the necessary information to
generate an API is stored in the ADT, i.e. only the production rules and not
the nonterminal declarations. Since the intended use of the ADT format is to
represent the structure of parse trees belonging to an SDF definition, three
kinds of production rules are supported:

� Production rules: constructor( n, c, ATerm), where n is the nonter-
minal, c the alternative and ATerm the corresponding pattern. The couple
of n and c must be unique in an ADT definition;

� Lists: list(A, A’), where A is the nonterminal and A’ the element type;

� Separated lists: separated-list( A, A’, [ATerm+]), where A is the
nonterminal and A’ the element type and ATerm+ is a list of separators.
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1 [
2 l i s t ( PhoneBook , Entry ) ,
3 c o n s t r u c t o r ( Entry , Home,
4 home( < person (Name) > , <phone ( PhoneNumber) >) ) ,
5 c o n s t r u c t o r ( Entry , Work ,
6 work( <company (Name) > , <phone ( PhoneNumber) >) ) ,
7 c o n s t r u c t o r ( Name, Name, name( < s t r i n g ( s t r ) >) ) ,
8 c o n s t r u c t o r ( PhoneNumber , Voice , voice ( < i n t e g e r ( i n t ) > ) ) ,
9 c o n s t r u c t o r ( PhoneNumber , Fax , fax ( < i n t e g e r ( i n t ) > ) )

10 ]

Figure 7.12 The ADT definition for the phone book.

The running example for this case study is a phone book data-structure. It
contains a list of entries, where the type of an entry can be person or company.
Both person and company have the fields name and phone number. The phone
number can be either a voice number or a fax number. Figure 7.12 shows the
ADT definition for this phone book data-structure.
An instance of a phone book ATerm is presented below.

[
home(
name("Arnoldus"),
voice(0205951616)
),
work(
name("Hogeschool"),
fax(0205951620)
)

]

It should be noted that the ADT formalism does not support the explicit
definition of start symbols. Instead of defining a start symbol, ApiGen generates
for all nonterminals a function to parse trees using that nonterminal as start
symbol.

7.5.3 From ADT to an API

Before discussing the code generator implementation, we first discuss the
mapping of an ADT to a Java API implementation. The code generated by
ApiGen contains two different components:

� A data structure based on the regular tree grammar.

� A factory to create and manipulate trees stored in that data structure.
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Figure 7.13 Composite design pattern [45].

These components of the generated API are based on the composite pattern and
factory pattern as documented in [45].

A. Data Structure

The data structure implementation is based on the composite pattern, see
Figure 7.13. It constructs a type structure to represent a tree in the form of
objects connected to each other via a has-a relationship. The nonterminals in the
regular tree grammar are implemented as abstract classes and the production
rules are implemented as concrete subclasses of that nonterminal.

ApiGen generates the classes based on the composite pattern on top of the
generic Java ATerm library. The connection between the ATerm Library and the
concrete classes representing the nodes contains a number of inheritance steps.
Two classes AbstractType and AbstractListType are generated to form the
bridge between the generated API and the ATerm library. The first extends
the class ATermApplImpl and the second the class ATermListImpl, which are
members of the ATerm library representing an ATerm node and ATerm list
node. The AbstractType and AbstractListType contain the default methods
provided by every subclass of the generated API. The next layer generated
by ApiGen is the abstract classes representing the nonterminals of the ADT.
For each nonterminal an abstract class with the name of the nonterminal is
generated. This generated abstract class extends AbstractType or in case the
nonterminal represents a list, the abstract class extends AbstractListType.
The nonterminal class contains the definition and default behavior of the
accessor methods for that nonterminal. Figure 7.14 shows the important part
of the generated class for the nonterminal PhoneNumber.
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1 a b s t r a c t publ ic c l a s s PhoneNumber extends AbstractType {
2

3 publ ic PhoneNumber ( . . . ) {
4 super ( . . . ) ;
5 }
6

7 publ ic boolean isEqual ( PhoneNumber peer ) {
8 re turn super . i sEqual ( peer ) ;
9 }

10

11 publ ic boolean isSortPhoneNumber ( ) {
12 re turn true ;
13 }
14

15 publ ic boolean i s Voi ce ( ) { re turn f a l s e ; }
16

17 publ ic boolean isFax ( ) { re turn f a l s e ; }
18

19 publ ic boolean has Integer ( ) { re turn f a l s e ; }
20

21 publ ic i n t g e t I n t e g e r ( ) {
22 throw new UnsupportedOperationException (
23 " This PhoneNumber has no i n t e g e r " ) ;
24 }
25

26 publ ic PhoneNumber s e t I n t e g e r ( i n t i n t e g e r ) {
27 throw new Il legalArgumentException (
28 " I l l e g a l argument : i n t e g e r " ) ;
29 }
30

31 }

Figure 7.14 Snippet of the PhoneNumber class.

The final layer generated by ApiGen is the concrete classes for the different
alternatives of a nonterminal. For each alternative a class with the name of the
alternative is generated. This class extends the abstract class of the nonterminal
belonging to the alternative, where all the accessor methods are implemented.
These classes are finally used to instantiate trees belonging to the tree language
defined by the ADT. Figure 7.15 shows the concrete class for the alternative
Fax of the nonterminal PhoneNumber generated by ApiGen. In case of the
alternative for Voice the same listing is generated, where Fax is replaced by
Voice.

B. Factory

The second generated component is based on the factory pattern, see Fig-
ure 7.16, to instantiate trees based on the generated data structure. This gener-
ated factory provides methods to create, parse, manipulate and export trees
conforming to the ADT. It is obligatory to use a factory for instantiating ATerm
based trees in order to provide maximal subterm sharing; only one instance of
any subterm exists in memory. The Java ATerm library provides this factory
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1 publ ic c l a s s Fax extends PhoneNumber {
2

3 publ ic Fax ( . . . ) { super ( . . . ) ; }
4 p r i v a t e s t a t i c i n t index_ integer = 0 ;
5

6 publ ic shared . SharedObject du pl i ca te ( ) { . . . }
7

8 publ ic boolean equiva lent ( shared . SharedObject peer )
9 { . . . }

10

11 protec ted aterm . ATermAppl make (
12 aterm . AFun fun , aterm . ATerm [ ] args ,
13 aterm . ATermList annos ) {
14 re turn
15 getPhonebookFactory ( )
16 . makePhoneNumber_Fax ( fun , args , annos ) ;
17 }
18

19 publ ic aterm . ATerm toTerm ( ) {
20 i f ( term == n u l l ) {
21 term = getPhonebookFactory ( ) . toTerm ( t h i s ) ;
22 }
23 re turn term ;
24 }
25

26 publ ic boolean isFax ( ) { re turn true ; }
27

28 publ ic boolean has Integer ( ) { re turn true ; }
29

30 publ ic phonebook . types . PhoneNumber s e t I n t e g e r ( i n t i n t e g e r ) {
31 re turn ( phonebook . types . PhoneNumber ) super . setArgument (
32 getFac tory ( ) . makeInt ( i n t e g e r ) , index_ integer ) ;
33 }
34

35 publ ic i n t g e t I n t e g e r ( ) {
36 re turn ( ( aterm . ATermInt )
37 getArgument ( index_ integer ) ) . g e t I n t ( ) ;
38 }
39

40 publ ic aterm . ATermAppl setArgument ( aterm . ATerm arg , i n t i )
41 { . . . }
42

43 protec ted i n t hashFunction ( ) { . . . }
44

45 }

Figure 7.15 Snippet of the Fax alternative for the PhoneNumber nonterminal.
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Figure 7.16 Factory design pattern [45].

by the implementation called “ATermFactory”. In case we generate an API
for an ATerm based tree language, a factory must be created supporting the
instantiation of trees for that tree language. Therefore, ApiGen generates a layer
on top of the ATermFactory containing make methods to instantiate (sub)trees
using the classes of the generated data structure.

The generated factory provides special make methods for the nodes defined
in the ADT. These make methods form the abstraction of the ATerm library,
as it is not necessary to know the underlying ATerm representation to create
trees defined by the ADT. When called, these make methods instantiate nodes
based on the classes of the generated data structure and encapsulate the
administration to achieve maximal subterm sharing. In case of list types, the
factory class also provides the list operations reverse, concat and append.
Beside the make methods, the factory class also contains methods to instantiate
a tree from a string, to serialize it from a tree to a string, and cast methods to
transform a tree to a generic ATerm representation and vice versa. Figure 7.17

shows a snippet of the generated factory for the phone book example.

1 publ ic phonebook . types . phonenumber . Voice
2 makePhoneNumber_Voice ( i n t _ i n t e g e r ) {
3 aterm . ATerm [ ] args = new aterm . ATerm [ ] {
4 f a c t o r y . makeInt ( _ i n t e g e r )
5 } ;
6 re turn makePhoneNumber_Voice (
7 fun_PhoneNumber_Voice , args , f a c t o r y . getEmpty ( ) ) ;
8 }
9

10 publ ic phonebook . types . phonenumber . Voice
11 makePhoneNumber_Voice ( i n t _ integer ,
12 aterm . ATermList annos ) {
13 aterm . ATerm [ ] args = new aterm . ATerm [ ] {
14 f a c t o r y . makeInt ( _ i n t e g e r )
15 } ;
16 re turn makePhoneNumber_Voice (
17 fun_PhoneNumber_Voice , args , annos ) ;
18 }

Figure 7.17 Snippet of the generated factory.
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7.5.4 Original Code Generator

The original Java implementation of ApiGen is based on a two-stage archi-
tecture. The first stage reads the ADT file and instantiates an in-memory
instantiation of it. The second stage consists of a number of code emitter
classes using the in-memory model. Based on reverse engineering the original
implementation of ApiGen, both stages are discussed in more detail.

The first stage is the ADT reader. It reads an ADT specification, containing
the specification of the tree structure, from file. The ADT is an ATerm and
as a result the in-memory representation of an ADT is implemented by a
generated API. The ADT reader calls the factory to instantiate the in-memory
representation of an ADT file. Besides reading the ADT file, the first stage
also executes a couple of model transformations. For example, the constructor
rules in the ADT contain an ATerm pattern belonging to that node. The
model transformation extracts the ATerm placeholders to collect the fields
for that constructor rule. Figure 7.18 shows the field collection method of the
model transformation. It is a recursive function traversing an ATerm pattern
and instantiating a field object for every ATerm placeholder occurring in
the pattern. For example the fields company and phone with their respective
arguments Name and PhoneNumber are extracted from the ATerm pattern of the
work alternative

work(<company(Name)>,<phone(PhoneNumber)>).

The second stage of ApiGen is responsible for generating the output code. For
every kind of classes ApiGen generates a code emitter is written. ApiGen con-
tains seven code emitter classes: FactoryGenerator, AbstractListGenerator,
AbstractTypeGenerator, ListTypeGenerator,
SeparatedListTypeGenerator, TypeGenerator and AlternativeGenerator.
The emitter classes are implemented as println generators, which results in a
mix of Java used as object code and Java used as meta code. Figure 7.19 shows
the genMakeMethod method of the FactoryGenerator class. This method is
responsible for generating the make methods of the factory class, as shown in
Figure 7.17.

For each alternative declared by the constructor rules in the ADT a set of
make methods are generated. Considering the code snippet of Figure 7.19, the
following actions are executed. The first statements, in lines 3-9, construct
the identifiers used in the generated code by calling a number of helper
functions. At line 11-12, the output code is instantiated by printing a string
to the output buffer, internally redirect to the output file. The if-statement
is used to select the generation of a forwarded make method in case the
factory is defined by an imported ADT module. Helper functions such as
buildActualTypedAltArgumentList are used to reduce code clones in the
generator self. At line 31 an if-statement is used to ensure the separator token
is only generated when the alternative has fields.
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1 p r i v a t e void e x t r a c t F i e l d s (ATerm t ) {
2 AFun fun ;
3 ATermAppl appl ;
4 ATermList l i s t ;
5 switch ( t . getType ( ) ) {
6 case ATerm . APPL :
7 appl = ( ATermAppl ) t ;
8 fun = appl . getAFun ( ) ;
9 f o r ( i n t i = 0 ; i < fun . ge tAr i ty ( ) ; i ++) {

10 e x t r a c t F i e l d s ( appl . getArgument ( i ) ) ;
11 }
12

13 break ;
14 case ATerm . LIST :
15 l i s t = ( ATermList ) t ;
16 f o r ( i n t i = 0 ; ! l i s t . isEmpty ( ) ; i ++) {
17 e x t r a c t F i e l d s ( l i s t . g e t F i r s t ( ) ) ;
18 l i s t = l i s t . getNext ( ) ;
19 }
20 break ;
21 case ATerm .PLACEHOLDER :
22 ATerm ph = ( ( ATermPlaceholder ) t ) . ge tP laceholder ( ) ;
23 i f ( ph . getType ( ) == ATerm . LIST ) {
24 . . .
25 addField ( f i e l d I d , f ie ldType ) ;
26 } e l s e i f ( ph . getType ( ) == ATerm . APPL) {
27 . . .
28 addField ( f i e l d I d , f ie ldType ) ;
29 } e l s e {
30 throw new
31 RuntimeException ( " i l l e g a l f i e l d spec : " + t ) ;
32 }
33 break ;
34 d e f a u l t :
35 break ;
36 }
37 }

Figure 7.18 Extraction of fields from ATerm pattern.

The original ApiGen implementation is based on a two-stage architecture.
However, the distribution of tasks for the model transformation and code
emitter in the original implementation of ApiGen is not optimal. Some model
transformations are executed during code generation. For example Figure 7.20

shows a model transformation task inside the AlternativeGenerator class at
line 4. This method genAltFieldIndexMembers is called for every type defined
in the ADT. The type object contains all fields possible for that type. When
this method is called, the statement at line 4 fetches all fields for the current
alternative of the type. In our opinion this filtering should be done at model
transformation phase, for example the class Alternative should provide a
list of its associated fields. Although this filtering seems innocent, it is a call
back to the model, so a wrong implementation of the altFieldIterator could
change the model. altFieldIterator is a member of the type Type and has
direct access to the private fields of Type. It is possible to change the values of
these private fields, resulting in a change of the model during code generation.
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1 p r i v a t e void genMakeMethod ( Type type ,
2 A l t e r n a t i v e a l t , boolean forwarding , S t r i n g moduleName) {
3 JavaGenerationParameters params =
4 getJavaGenerat ionParameters ( ) ;
5 S t r i n g altClassName =
6 Alternat iveGenera tor . qualifiedClassName (
7 params , type , a l t ) ;
8 S t r i n g makeMethodName = "make" + concatTypeAlt ( type , a l t ) ;
9 S t r i n g funVar = funVariable ( type , a l t ) ;

10

11 p r i n t ( " publ ic " + altClassName
12 + ’ ’ + makeMethodName + " ( " ) ;
13 printFormalTypedAltArgumentList ( type , a l t ) ;
14 p r i n t l n ( " ) { " ) ;
15 i f ( ! forwarding ) {
16 p r i n t (
17 " aterm . ATerm [ ] args = new aterm . ATerm [ ] { " ) ;
18 printActualTypedArgumentList ( type , a l t ) ;
19 p r i n t l n ( " } ; " ) ;
20 p r i n t l n ( " re turn " + makeMethodName +
21 " ( " + funVar + " , args , f a c t o r y . getEmpty ( ) ) ; " ) ;
22 } e l s e {
23 . . .
24 }
25 p r i n t l n ( " } " ) ;
26 p r i n t l n ( ) ;
27

28 p r i n t ( " publ ic " + altClassName
29 + ’ ’ + makeMethodName + " ( " ) ;
30 printFormalTypedAltArgumentList ( type , a l t ) ;
31 i f ( type . a l t F i e l d I t e r a t o r ( a l t . get Id ( ) ) . hasNext ( ) )
32 p r i n t ( " , " ) ;
33 p r i n t l n ( " aterm . ATermList annos ) { " ) ;
34 i f ( ! forwarding ) {
35 . . .
36 } e l s e {
37 . . .
38 }
39 p r i n t l n ( " } " ) ;
40 p r i n t l n ( ) ;
41 }

Figure 7.19 Small part of the ApiGen code emitter.

Furthermore, genAltFieldIndexMembers cannot be expressed in Repleo, as a
compare operator and a mechanism to store values is necessary.

7.5.5 Reimplemented Code Generator

We reimplemented ApiGen using the two-stage architecture with a strict sepa-
ration between the model transformation stage and code emitter stage. The
model transformation are defined as a set of rewrite rules using a term rewrit-
ing system (ASF+SDF) and the code emitter is implemented using syntax safe
templates. The model transformations used in the presented case studies are
mainly tree transformations. Term rewriting provides a powerful computa-
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1 p r i v a t e void genAltFieldIndexMembers ( Type type ,
2 A l t e r n a t i v e a l t ) {
3 I t e r a t o r <Fie ld > f i e l d s =
4 type . a l t F i e l d I t e r a t o r ( a l t . get Id ( ) ) ;
5 i n t argnr = 0 ;
6 while ( f i e l d s . hasNext ( ) ) {
7 F i e l d f i e l d = f i e l d s . next ( ) ;
8 S t r i n g f i e l d I d = getF ie ldIndex ( f i e l d . get Id ( ) ) ;
9 p r i n t l n ( " p r i v a t e s t a t i c i n t " + f i e l d I d

10 + " = " + argnr + " ; " ) ;
11 argnr ++;
12 }
13 }

Figure 7.20 Example of model transformation in code emitter.

ADT
Trans-

former

Intermediate

format
Repleo

templates

Java code

Figure 7.21 Generation scheme: from ADT to code.

tional paradigm to express these tree transformation. Figure 7.21 shows the
architecture of the reimplementation. The rectangular shapes denote (inter-
mediate) files and the circular shapes denote the transformation engines. The
model transformation reads the ADT input model and computes the inter-
mediate representation, also an ATerm. The second stage is defined using a
set of templates accepting the intermediate representation as input data. The
reimplementation of ApiGen uses a small bash script to connect the model
transformation stage to the code emitters.

The intermediate representation of the reimplementation already implements
the design patterns used in the generated code. We will show it using the
intermediate representation of the phone book example, see Figure 7.22. The
intermediate representation has a list of types, divided into type and list
kinds. These types represent the nonterminals and are implemented as abstract
classes. Considering Figure 7.14, an abstract class with the name of the type
PhoneNumber is generated, containing is methods for every alternative of the
type and a default get and set method for the fields. The alternatives of a type
are used for generating the concrete classes, as shown in Figure 7.15. One can
notice cloning of fields between the level of the type node and alternative nodes.
The metalanguage of our templates is not capable to calculate the fields for an
alternative; as a result the field nodes are stored multiple times in the input
data. Since this intermediate representation is also used for the generation of
the factory class, the alternatives contain an ATerm pattern corresponding with
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1 [
2 type (
3 " Entry " ,
4 [
5 a l t e r n a t i v e ( "Home" , 2 , "home( <term >,<term > ) " ,
6 [
7 f i e l d ( " person " , notreserved ( "Name" ) , 0 ) ,
8 f i e l d ( " phone " , notreserved ( " PhoneNumber " ) , 1 )
9 ] ) ,

10 a l t e r n a t i v e ( "Work" , 2 , " work( <term >,<term > ) " ,
11 [
12 f i e l d ( " company " , notreserved ( "Name" ) , 0 ) ,
13 f i e l d ( " phone " , notreserved ( " PhoneNumber " ) , 1 )
14 ] )
15 ] ,
16 [
17 f i e l d ( " person " , notreserved ( "Name" ) ) ,
18 f i e l d ( " phone " , notreserved ( " PhoneNumber " ) ) ,
19 f i e l d ( " company " , notreserved ( "Name" ) )
20 ]
21 ) ,
22 type (
23 "Name" ,
24 [
25 a l t e r n a t i v e ( "Name" , 1 , "name( < s t r > ) " ,
26 [
27 f i e l d ( " s t r i n g " , reserved ( s t r ) , 0 )
28 ] )
29 ] ,
30 [
31 f i e l d ( " s t r i n g " , reserved ( s t r ) )
32 ] ) ,
33 type (
34 "PhoneNumber " ,
35 [
36 a l t e r n a t i v e ( " Voice " , 1 , " voice ( < int > ) " ,
37 [
38 f i e l d ( " i n t e g e r " , reserved ( i n t ) , 0 )
39 ] ) ,
40 a l t e r n a t i v e ( " Fax " , 1 , " fax ( < int > ) " ,
41 [
42 f i e l d ( " i n t e g e r " , reserved ( i n t ) , 0 )
43 ] )
44 ] ,
45 [
46 f i e l d ( " i n t e g e r " , reserved ( i n t ) )
47 ]
48 ) ,
49 l i s t ( " PhoneBook " , notreserved ( " Entry " ) )
50 ]

Figure 7.22 The intermediate representation of the phone book.

the node.

The model transformation is responsible for translating the ADT input model
to the intermediate representation. Considering the ADT of Figure 7.12 and
the intermediate representation of Figure 7.22, the model transformation has
collected all constructor rules for a type in a single node, where the different
constructor rules are represented as alternatives for that type. Besides collecting
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1 g e t F i e l d s F o r A l t ( < $IdCon ( $IdCon ’ ) > , < $ F i e l d A l t ∗ , $NatCon >) =
2 <
3 $ F i e l d A l t ∗ ,
4 f i e l d ( unparse−to−s t r i n g ( $IdCon ) ,
5 getTypeImplementation ( $IdCon ’ ) ,
6 $NatCon ) ,
7 $NatCon + 1

8 >

Figure 7.23 Extraction of fields from ATerm pattern.

the types, the model transformation extracts the fields from the ATerm pattern
specified in each constructor rule. Additionally the ATerm pattern is translated
to the pattern used in the factory class, i.e. the placeholders are replaced with
generic ATerm placeholders.

Figure 7.23 shows the extraction of fields for an ATerm pattern belonging to
an alternative for a type. It is the reimplementation of the code of Figure 7.18

using ASF+SDF. It is specified as a traversal walking along the ATerm pattern,
where this rule declares a match on an ATerm placeholder. The identifiers
having a dollar-sign prefix are declared as variables. The traversal stops when it
detects an ATerm placeholder, specified by the pattern < $IdCon($IdCon’) >.
At a match it returns an instantiated field for the intermediate representation.
Note, the $NatCon is a helper argument in order to provide an index number
to the field.

The second stage is responsible for the actual code generation and is imple-
mented using syntax safe templates. Seven templates, equal to the seven emitter
classes in the original implementation and having the same tasks, are defined.
The templates are constructed by extracting the object code from the original
class and add placeholders when necessary. Figure 7.24 shows a snippet of the
template generating the factory class. This snippet is responsible for generating
the make methods, see Figure 7.17 for the result when using the input data
of Figure 7.22. These methods are generated for each alternative of each type.
The loop over the alternatives is expressed by two match-replace placeholders.
This example also uses the built-in metalanguage functions _lc and _cc. These
are shorthand notations for transforming a string to lowercase or camel-case,
i.e. the first letter is capitalized. From a Puritan point of view, these functions
should not be available in the metalanguage. The different layouts of identifiers
should be stored in the input data. In practice, this would lead to a lot of
variants of lexical layouts of identifiers in the input data, while most string
manipulations are necessary to comply to the layout convention of the object
language6. The availability of these functions makes it possible to express the

6 It is possible to express the semantics of the string manipulation functions in a couple of
subtemplates in combination with match-replace placeholders. The implementation would be a
variant of the template given in Section 4.3.5.
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1 . . .
2 template [
3 . . .
4 <: match : >
5 <: [ type ( $type , $ a l t e r n a t i v e s , $ f i e l d s ) , $types ] =: >
6 <: match $ a l t e r n a t i v e s : >
7 <: [ a l t e r n a t i v e ( $altname , $ a r i t y , $pattern , $ a l t f i e l d s ) ,
8 $ a l t e r n a t i v e s ] =: >
9 publ ic <: $apiname : > . types . < : _ l c ( $type ) : > . < : _cc ( $altname ) : >

10 <: "make" + $type + " _ " + _cc ( $altname ) : >
11 ( <: genArguments ( $ a l t f i e l d s ) : > ) {
12 aterm . ATerm [ ] args =
13 new aterm . ATerm [ ] { <: genArray ( $ a l t f i e l d s ) : > } ;
14 re turn <: "make" + $type + " _ " + _cc ( $altname ) : > (
15 <: " fun_ " + $type + " _ " + _cc ( $altname ) s o r t : Expr : > ,
16 args , f a c t o r y . getEmpty ( ) ) ;
17 }
18

19 publ ic <: $apiname : > . types . < : _ l c ( $type ) : > . < : _cc ( $altname ) : >
20 <: "make" + $type + " _ " + _cc ( $altname ) : >
21 ( < : genArguments ( $ a l t f i e l d s ) : > ,
22 aterm . ATermList annos ) {
23 aterm . ATerm [ ] args =
24 new aterm . ATerm [ ] { <: genArray ( $ a l t f i e l d s ) : > } ;
25 re turn <: "make" + $type + " _ " + _cc ( $altname ) : >
26 ( <: " fun_ " + $type + " _ " + _cc ( $altname ) s o r t : Expr : > ,
27 args , annos ) ;
28 }
29 . . .
30 <: $ a l t e r n a t i v e s s o r t : ClassBodyDec∗: >
31 <: [ ] =: >
32 <: end : >
33 <: $types s o r t : ClassBodyDec∗: >
34 . . .
35 <: [ ] =: >
36 <: end : >
37 . . .
38 ]
39 . . .

Figure 7.24 Small part of the ApiGen code emitter.

layout requirements in the template, instead of having them in the input data.

7.5.6 Comparing the Old and the New Implementation

We compare the original implementation and reimplementation on architec-
tural level and code level. On architectural level, both implementations are
based on the two-stage architecture. The original implementation does not
have a concrete syntax for the intermediate representation, but uses a class
structure for the objects storing the derived information. However, the origi-
nal implementation does not have a strict separation between the two-stages
as the code emitters call the model transformation during generation of the
code. In the reimplemented ApiGen calling the model transformation from the
code emitter is impossible as there is only a one-way link between the model
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transformation and the templates. For example, our restricted metalanguages
forces us the specify the calculation performed in the code emitter method of
Figure 7.20 in the model transformation stage.

On code level the original ApiGen implementation is Java based, while the
reimplementation is implemented using ASF+SDF for the model transforma-
tion and syntax safe templates for the code emitters. The model transformation
is a function reading the ADT, which is a tree, with as output the intermediate
representation, which is also a tree. Tree rewriting can be expressed compactly
using a term rewriting system, especially since the used term rewriting system
ASF+SDF has native support for traversal functions [19]. The model transfor-
mation phase in the reimplementation is specified with a total of 21 functions
based on 54 (sub) equations. The original model transformation implementa-
tion using Java is more verbose and uses a total of 3112 lines of code (without
blank lines) spread over 34 files. An example of the effect of reduction of lines
of code is the refactoring of the snippet of Figure 7.18 to the equation in the
model transformation of the reimplementation shown in Figure 7.23.

In the original implementation the code emitter stage is implemented using
println() statements. The use of templates in the reimplementation results
in a smaller implementation in volume. Common tasks like file handling and
separator handling are covered by the template evaluator. The advantage of
having templates is that the object code is the main language in the document,
instead of the meta code in case of the original implementation.

The Table 7.2 shows the result of measuring the old implementation of ApiGen
and the reimplementation. We measured all 57 files of the original ApiGen
implementation7. The total number of files of the reimplementation is 14,
including grammar definitions, model transformations, shell script and tem-
plates.

Considering Table 7.2 we see that the number of lines of code of the reimple-
mentation is almost a third of the original implementation and the number
of tokens is reduced 2.5 times. The reduction of the volume of the code is a
result of three differences between the original implementation and the reim-
plementation. First the model transformation is expressed in a term rewriting
formalism instead of Java. Second, the original implementation uses a gen-
erated API for the ADT format, while the reimplementation only contains
a grammar definition for it. The last reason is that original implementation
contains code for output file handling, which is encapsulated by the template
evaluator in the reimplementation.

Beside the reduction of tokens, the ratio’s between lines of code8 and tokens is
not improved. The number of tokens per line of code in the reimplementation

7 The original implementation also provided a C code emitter. We removed these classes from the
project.
8 We used the lines of code without blank lines.
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Metric Original Reimplementation

Lines of Code 8,789 2,975

Lines of Code (without blank lines) 7,296 2,361

Tokens 84,230 33,254

Alphanumeric tokens 25,986 7,572

Non-alphanumeric tokens 33,704 15,669

White space tokens 24,540 10,013

Average number of tokens per line 11.5 14.08

Average number of non-alphanumeric tokens per line 4.62 6.64

Table 7.2 Metrics of ApiGen and the reimplementation.

is even higher than the original implementation. Thereby the number of non-
alphanumeric tokens per line is increased by 43%. This is caused by the
fact that the original implementation of ApiGen has a limited number of
functions containing object code. The programmers of ApiGen have aimed for
the reduction of code clones on the level of the object code specification. Having
less strings results in a lower level of non-alphanumeric tokens. At first sight
when inspecting the code, we experienced that the original implementation
was better readable than the reimplementation. However, at the moment we
noticed that the reimplementation contains Java code in strings; it is finally
harder to read the code it generates than the implementation using templates.
This is amplified, since the object code in ApiGen is presented as small chunks
and one must analyze the flow graph to understand how the output code is
constructed [29].

7.5.7 Related Work

A similar approach is used in JastAdd [54] to translate regular tree grammars
into a data structure implementation. JastAdd uses the interpreter pattern, see
Figure 7.25. The difference between the composite pattern and interpreter
pattern is mainly the intention, where the composite pattern is a structural
pattern, while the interpreter pattern is a behavioral pattern. This is reflected
by the fact that the composite pattern classes have accessor methods and
construction methods, while the interpreter pattern has an evaluation method
including an evaluation context.

7.5.8 Evaluation

We discussed the reimplementation of ApiGen using templates. It is possible
to re-implement a complex code generator like ApiGen using syntax safe
templates and the metalanguage as presented in Chapter 4. We showed that
use of a two-stage architecture, without a bidirectional connection between both
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Figure 7.25 Interpreter design pattern [45].

stages, improved the separation of concerns between the model transformation
and the code emitters. The use of formalisms better suitable for the intended
task, i.e. term rewriting for the model transformation and templates for the
code emitters, results in a more compact definition of the code generator and
it results in better maintainability [106]. The number of lines of code of the
reimplementation is almost a third of the original implementation and the
number of tokens is reduced 2.5 times. Although the code is more compact, the
functionality of ApiGen is not changed and syntax safety is even introduced.

7.6 NunniFSMGen

This section discusses the reimplementation of NunniFSMGen9 using syntax
safe templates. NunniFSMGen is a tool to translate a specification of a finite
state machine into an implementation for Java, C or C++. It uses the state
design pattern [45] to implement the state machine in the different output
languages.

This case study covers the generation of code based on a behavioral design
pattern. Furthermore it shows that the same intermediate representation can
be used for different output languages, as long as they support the implemen-
tation of the state design pattern. This section shows the reimplementation
of NunniFSMGen using a parser, model transformation and templates. We
first give an overview of the original approach of NunniFSMGen. Next the
reimplementation of NunniFSMGen is presented. At the end we discuss the
main differences between the original implementation and the new template
based implementation.

9 http://sourceforge.net/projects/nunnifsmgen/ (accessed on November 30, 2010)

http://sourceforge.net/projects/nunnifsmgen/


174 Case Studies

7.6.1 Finite State Machines

We start with a formal definition of finite state machines, before discussing the
input format of NunniFSMGen. Hereafter we relate their input format to the
formal concept of finite state machines [5].

Definition 7.6.1. (Deterministic finite state machine) A deterministic finite
state machine is a 5-tuple M = 〈Σ, Q, q0, δ, F〉, where:

Σ is the input alphabet,

Q is a finite, non-empty set of states,

q0 is an initial state and q0 ∈ Q,

δ is the state-transition function: δ : Q× Σ→ Q,

F is the set of final states, a (possibly empty) subset of Q.

Example 7.6.2. Let M be a finite state machine, where

Σ = {activate, deactivate, hotenough, maintenance},
Q = {STANDBY, WARMINGUP, ERROR, MAINTENANCE},
q0 = STANDBY, F = {} and the transition function:

δ(STANDBY, activate) = WARMINGUP
δ(STANDBY, hotenough) = ERROR

δ(STANDBY, maintenance) = MAINTENANCE
δ(STANDBY, deactivate) = STANDBY

δ(WARMINGUP, activate) = WARMINGUP
δ(WARMINGUP, deactivate) = STANDBY

δ(WARMINGUP, hotenough) = STANDBY
δ(WARMINGUP, maintenance) = MAINTENANCE

δ(ERROR, activate) = ERROR
δ(ERROR, deactivate) = ERROR

δ(ERROR, hotenough) = ERROR
δ(ERROR, maintenance) = MAINTENANCE

δ(MAINTENANCE, activate) = STANDBY
δ(MAINTENANCE, hotenough) = MAINTENANCE

δ(MAINTENANCE, maintenance) = MAINTENANCE
δ(MAINTENANCE, deactivate) = MAINTENANCE

This state machine describes the behavior of a central heating system (see
Figure 7.26 for a graphical representation). It is an example state machine
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deactivate

Figure 7.26 Graphical representation of the state machine.

distributed along with the source code of the original NunniFSMGen10imple-
mentation.

7.6.2 NunniFSMGen Input Model

The input model used by NunniFSMGen is not a 5-tuple of a state machine
as defined in Paragraph 7.6.1, but a transition table. The transition table is a

10 http://sourceforge.net/projects/nunnifsmgen/ (accessed on November 30, 2010)

http://sourceforge.net/projects/nunnifsmgen/
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set of transition rules of the form startingState event nextState action.
The tuple of startingState and event is equal to the left-hand side of the
transition rules of Definition 7.6.1. The name event is chosen instead of token
to indicate it is an event driven state machine. The right-hand side of the
transition rule corresponds to the nextState. An additional feature is to specify
a method call hooked to a transition using the action field. This method call
is invoked when the state machines uses that transition rule. Furthermore if
the nextState is a dash -, then a transition rule will not cause a change of
state. The dash - can also be used in the action field to specify that no action
is required when the transition is executed. The action can also contain an
exclamation mark !. The exclamation mark defines that the action must throw
an exception and after that the state machine will go the error state. The states
and alphabet are declared implicitly by means of the transition rules.

The transition table also supports the declaration of parameters to specify
(optional) properties, such as the error state. The following properties are
available:

� Context: Name of the FSM. All resulting classes are named after this
name using it as prefix.

� InitialState: The initial state of the FSM.

� ErrorState: The error state of the FSM. This is a required field in case
an error action ’!’ is specified.

� Package(only Java): Name of the package of the generated code.

� EventParamType(optional): parameter type passed on event methods.

� Copyright(optional): a file containing a copyright text to be included at
the top of each generated file.

We did not implement the optional properties of the transition table for the
reimplementation of NunniFSMGen.

We specified the grammar showed in Figure 7.27 for the original transition
table format. The grammar also has constructor information to translate the
parse tree to an abstract syntax tree. We omitted the definition of the lexical
sorts except for Id. The definition of Id is based on the character class shared
by all output languages of NunniFSMGen. When the character class of one
output language is richer than the other output language(s), it is possible that
code generated for the first language is well-formed, while the code generated
for the next language is syntactically incorrect. For the output languages Java,
C and C++ is it no issue, since they share the same character class for identifiers.
Furthermore, we limited the set of allowed identifiers by defining reject rules
for Id to prevent collisions with keywords of the output languages, such as
the if at line 22. Since we use syntax safe templates, these reject rules are
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1 module FSMGen
2

3 hiddens
4 context−f r e e s t a r t−symbols Rules
5 exports
6 s o r t s Rules Rule NextState Action
7 context−f r e e syntax
8 Rule∗ −> Rules { cons ( " r u l e s " ) }
9 " Context " Id −> Rule { cons ( " contex t " ) }

10 " I n i t i a l S t a t e " Id −> Rule { cons ( " i n i t i a l " ) }
11 " E r r o r S t a t e " Id −> Rule { cons ( " e r r o r " ) }
12 " Package " PackageName −> Rule { cons ( " package " ) }
13 " Copyright " FileName −> Rule { cons ( " copyright " ) }
14 " EventParamType " Id −> Rule { cons ( " paramtype " ) }
15 Id Id NextState Action −> Rule { cons ( " t r a n s i t i o n " ) }
16 Id −> NextState { cons ( " n e x t s t a t e " ) }
17 "−" −> NextState { cons ( " n o n e x t s t a t e " ) }
18 Id −> Action { cons ( " a c t i o n " ) }
19 "−" −> Action { cons ( " noact ion " ) }
20 " ! " −> Action { cons ( " e r r o r a c t i o n " ) }
21

22 " i f " −> Id { r e j e c t }
23

24 exports
25 s o r t s Id
26 l e x i c a l syntax
27 [ a−zA−Z\_ ] [ a−zA−Z\_0−9]∗ −> Id
28 l e x i c a l r e s t r i c t i o n s
29 Id −/− [ a−zA−Z\_0−9]

Figure 7.27 Context-free grammar for NunniFSMGen transition table.

superfluous, but the advantage of having them already in the grammar of
the input model is that errors are earlier detected in the generation process.
Instead of using reject rules in the transition table grammar, we could add a
prefix to the identifiers in the generated code. We did not use that approach
to have a clear mapping between the transition table and the generated code.
The original implementation of NunniFSMGen does not contain any checks
for these errors and just considers the values in the input model as strings.

In accordance with the state machine definition of Definition 7.6.1, NunniF-
SMGen requires that a transition rule is defined for each pair existing in the
Cartesian product of states and events, even when transition and action are
empty. In other words, the number of transition rules |transition rules| must
be equal to |states| ∗ |events|. A NunniFSMGen transition table for the central
heating system of Example 7.6.2 is shown in Figure 7.28. The abstract syntax
tree of this transition table is given in Figure 7.29. It is obtained by desugaring
the parse result of the transition table. The model transformation presented in
Section 7.6.3 uses this abstract syntax tree as input.
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1 Context Heater
2 I n i t i a l S t a t e STANDBY
3 E r r o r S t a t e ERROR
4 Package examples . heater
5

6 STANDBY a c t i v a t e WARMINGUP warmup
7 STANDBY d e a c t i v a t e − −
8 STANDBY hotenough ERROR !
9 STANDBY maintenance MAINTENANCE maintain

10 WARMINGUP a c t i v a t e − −
11 WARMINGUP d e a c t i v a t e STANDBY h e a t e r o f f
12 WARMINGUP hotenough STANDBY h e a t e r o f f
13 WARMINGUP maintenance MAINTENANCE h e a t e r o f f
14 ERROR a c t i v a t e − −
15 ERROR d e a c t i v a t e − −
16 ERROR hotenough − −
17 ERROR maintenance MAINTENANCE −
18 MAINTENANCE a c t i v a t e STANDBY i n i t i a l i z e
19 MAINTENANCE d e a c t i v a t e − −
20 MAINTENANCE hotenough − −
21 MAINTENANCE maintenance − −

Figure 7.28 Transition table for the central heating system of Example 7.6.2.

1 r u l e s ( [
2 contex t ( " Heater " ) ,
3 i n i t i a l ( "STANDBY" ) ,
4 e r r o r ( "ERROR" ) ,
5 package ( " examples . heater " ) ,
6 t r a n s i t i o n ( "STANDBY" , " a c t i v a t e " ,
7 n e x t s t a t e ( "WARMINGUP" ) , a c t i o n ( " warmup " ) ) ,
8 . . .
9 t r a n s i t i o n ( "MAINTENANCE" , " maintenance " ,

10 nonexts ta te , noact ion )
11 ] )

Figure 7.29 Part of the abstract syntax tree of the transition table of Exam-
ple 7.6.2.

7.6.3 State Machine Implementation

NunniFSMGen translates a transition table into an implementation based on
the state design pattern [45]. The state design pattern is given in Figure 7.30

and the different classes correspond to the following functionality:

� Context

It defines the abstract methods to handle events and is the interface
_ for components using the state machine.

It defines a private changeState method replacing the current
_ state object by a new one.
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State
handle ()

Context
request ()

ConcreteStateA
handle ()

ConcreteStateB
handle ()

state.handle ()

Figure 7.30 State design pattern.

� State

It defines an interface for all classes that represent different
_ operational states.

� ConcreteStates

Each subclass implements a behavior associated with a state.

It handles the different events invoked via the Context object. The
_ handle call has the Context object as argument and when a
_ transition is defined, the changeState method is called with an
_ object of the new concrete state. If an action is defined, this action is
_ called before the changeState method is invoked.

The UML class diagram of the central heating system of the Java code generated
by NunniFSMGen is shown in Figure 7.31. NunniFSMGen implements the state
pattern using the transition table, where the events are the handles and the
states are implemented as concrete states. It slightly differs from the original
standard state pattern. First the context class HeaterFSM overrides a class
Heater. The class Heater contains the implementation of the action methods
and is used by the states to invoke the action methods at a state transition. The
inheritance of the class Heater is used to allow editing of the action method
bodies in the Heater class. The second difference with the original state design
pattern is the object o in the argument of the event handlers. This argument
is an optional object, which can be used by the action methods as context
information.

The C++ and C implementation are almost similar, except that the C imple-
mentation uses a struct to store the state object. Furthermore, C has no native
support for exception handling, which is simulated by a return value.

The transition table cannot be used directly for generating the code when
looking to the UML diagram of Figure 7.31. The state pattern has a hierarchical
structure, where each state implements handlers for each event, while the
transition table is list of vectors pointing from the startState to the nextState.
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Figure 7.31 Classes generated from the heater transition table.
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1 hiddens
2 s t a r t−symbols AFSM
3

4 exports
5 s o r t s AFSM Context I n i t i a l S t a t e E r r o r S t a t e
6 Package CopyRight ParamType T r a n s i t i o n s
7 Events Actions T r a n s i t i o n Event
8 NextState Action S t a t e
9

10 syntax
11 afsm ( Context , I n i t i a l S t a t e ,
12 Erro rS ta t e , Package , CopyRight ,
13 ParamTypem , Tra ns i t ions , Events ,
14 Actions )
15 −> AFSM
16 contex t ( Id ) −> Context
17 i n i t i a l s t a t e ( Id ) −> I n i t i a l S t a t e
18 e r r o r s t a t e ( Id ) −> E r r o r S t a t e
19 package ( PackageName ) −> Package
20 copyright ( FileName ) −> CopyRight
21 paramtype ( Id ) −> ParamType
22 t r a n s i t i o n s ( T r a n s i t i o n∗ ) −> T r a n s i t i o n s
23 t r a n s i t i o n ( S ta te , events ( Event∗ )
24 −> T r a n s i t i o n
25 event ( Event , NextState , Action )
26 −> Event
27 events ( Id∗ ) −> Events
28 a c t i o n s ( Id∗ ) −> Actions
29 Id −> S t a t e
30 Id −> Event
31 Id −> NextState
32 Id −> Action
33 StrCon −> Id
34 StrCon −> FileName
35 StrCon −> PackageName

Figure 7.32 Regular Tree Grammar of abstract implementation of the state design
pattern.

A model transformation is necessary to map the vector based transition table
to the hierarchical based state design pattern.

First an intermediate language of abstract implementation of the state design
pattern is defined by the regular tree grammar of Figure 7.32. The important
artifacts are the initialstate, the set of events, the set of actions and the
list of transitions. The first three elements directly map on elements of the
5-tuple of the formal definition of a state machine. The element transition
defines the transition for a state for every possible event. Instantiations of this
abstract implementation can be translated to a real implementation as long as
the state design pattern can be expressed in the output language.

We defined a model transformation to transform the abstract syntax tree of the
transition table to the abstract implementation of the state design pattern. This
transformation is based on the following, here informally defined, rules:

� Propagate all properties to the output model;
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1 afsm (
2 contex t ( " Heater " ) ,
3 i n i t i a l ( "STANDBY" ) ,
4 e r r o r ( "ERROR" ) ,
5 package ( " examples . heater " ) ,
6 copyright ( " " ) ,
7 paramtype ( " " ) ,
8 t r a n s i t i o n s ( [
9 t r a n s i t i o n ( "STANDBY" , events ( [

10 event ( " a c t i v a t e " ,
11 n e x t s t a t e ( "WARMINGUP" ) , a c t i o n ( " warmup " ) ) ,
12 event ( " d e a c t i v a t e " , nonexts ta te , noact ion ) ,
13 event ( " hotenough " , n e x t s t a t e ( "ERROR" ) , e r r o r a c t i o n ) ,
14 event ( " maintenance " , n e x t s t a t e ( "MAINTENANCE" ) ,
15 a c t i o n ( " maintain " ) ) ] ) ) ,
16 . . .
17 ] ) ,
18 events ( [ " a c t i v a t e " , " d e a c t i v a t e " ,
19 " hotenough " , " maintenance " ] ) ,
20 a c t i o n s ( [ "warmup " , " maintain " , " h e a t e r o f f " , " i n i t i a l i z e " ] )
21 )

Figure 7.33 Abstract implementation of the state design pattern of the heater transition
table of Example 7.6.2.

� Collect all unique events from the transition rules and store them in the
set events;

� Collect all unique actions from the transition rules and store them in the
set actions;

� Make for each unique state a new transition rule and add for each
event a triple with the event, the nextState and the action. Collect all
these rules in the set transitions.

This model transformation is straight-forward. This is reflected in an ASF
based implementation of the model transformation containing seven equations
based on 18 sub-equations. The abstract implementation of the state design
pattern of the central heating system is shown in Figure 7.33.

7.6.4 Original Code Generator

The original implementation of NunniFSMGen is a printf based generator
written in Java. Its main class contains a simple parser for the input file,
constructing a one-to-one in memory representation of the transition table
without any kind of rewriting or transformation. Based on the selected output
language a code generator class is instantiated provided with the loaded
input data. For each output language a code generator class is implemented
containing all the generator logic and object code. We can consider such a
code generator class as a single-stage code generator, since the different code
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generator classes share a lot of mutual shared code not factorized out in a
model transformation. Furthermore, since it is a single-stage code generator,
the model transformations are mostly entangled between object code artifacts.
During the initialization of the code generator, only the set of events and the set
of states are calculated. An example of the entanglement model transformation
is the generation of the particular code for an event. This code is combined
with the calculation of all events for a given state.

NunniFSMGen supports different configurations for an event:

� No transition, no action;

� No transition, with action;

� Transition to new state without action;

� Transition to new state with action;

� Transition to errorState with error action.

Considering the original implementation of NunniFSMGen, it selects the
different implementations of the required behavior via a set of conditions.
Since NunniFSMGen exists of three almost independent single-stage code
emitters, the set of conditions are cloned between the different code emitters.
The NunniFSMGen code emitters for C++ and Java are almost identical except
for the object code. In case of the code emitter for C, the meta code is almost
the same, but the way the object code implements the exception handling
differs from the C++ and Java version.

7.6.5 Reimplemented Code Generator

The reimplementation of NunniFSMGen is based on a two-stage architecture
using a parser, model transformation phase and templates. The input model
parser and model transformation are output language independent, while the
templates contain the output language specific code. For each output language,
i.e. C, C++ and Java, a set of templates is defined. The mutual shared code
in the templates is limited to the meta code responsible for traversing the
input data tree. All templates use the same abstract representation of the state
machine as input data. Tailored model transformations for a specific output
language are unnecessary. As a result the model transformation is not longer
entangled in the output language specific part of the code generator. The
architecture of the reimplemented NunniFSMGen is shown in Figure 7.34.

Figures 7.35, 7.36 and 7.37 show snippets of the reimplementation using syntax
safe templates. The use of syntax safe templates has some consequences over
the use of a text based generator. For example, the C and C++ grammars
have a couple of plus list nonterminals, which requires that at least one item
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Figure 7.34 Architecture of the reimplemented NunniFSMGen.

must be inserted in that list. Placeholders parsed as a child of a plus list
are typed as a plus list, resulting in the requirement that it should at least
generate one element. The placeholders and template evaluator traversal are
context-free, so they have no notion of the surrounding elements. The template
evaluator cannot determine whether the list is empty or not. Therefore a plus
list placeholder must return at least one element. An example is the semi-colon
in the match-replace placeholder at line 46 of Figure 7.35.

Another example of a consequence of using a syntax safe approach, and thus
also for syntax safe templates, is the cloning visible in lines 9-21 of Figure 7.37.
The if-statement in the object language is defined twice, first with an else
part and second without the else part. Syntax safe templates require that the
if-statement is a complete grammar element. The else part is not defined as an
optional nonterminal in the used C grammar, thus the code must be defined
twice.

Furthermore, these snippets show the metavariable $root a number of times.
It is used to obtain global information, like the FSM context name while
processing a subtree of the input data. Finally, the Java template of Figure 7.36

shows how multiple files are generated for every concrete state by the match-
replace placeholder surrounding the template template.
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1 template [
2 . . .
3 <: match $events1events1 : >
4 <: [ event ( $event , $ n e x t s t a t e , $ a c t i o n ) ] =: >
5 <: eventcode ( ) : >
6 <: [ event ( $event , $ n e x t s t a t e , $ a c t i o n ) , $ e v e n t l i s t ] =: >
7 <: eventcode ( ) : >
8 <: $ e v e n t l i s t : >
9 <: end : >

10 . .
11 ]
12

13 eventcode [
14 void <: $root1afsm1context1 + $ s t a t e + " S t a t e " : > : : < : $event : >
15 ( <: $root1afsm1context1 + "FSM" : > ∗ctx ,
16 void ∗o ) throw ( LogicError ) {
17 <: match $ a c t i o n : >
18 <: e r r o r a c t i o n =: >
19 ctx−>changeState (
20 <: $root1afsm1context1 + $root1afsm1error5

21 + " S t a t e " : > : : i n s t a n c e ( ) ) ;
22 throw LogicError ( ) ;
23 <: a c t i o n ( $actionname ) =: >
24 t r y {
25 ctx−><: $actionname : >( o ) ;
26 }
27 catch ( LogicError &e ) {
28 ctx−>changeState (
29 <: $root1afsm1context1 + $root1afsm1error5

30 + " S t a t e " : > : : i n s t a n c e ( ) ) ;
31 throw ;
32 }
33 <: nextstatetmp ( $ n e x t s t a t e ) : >
34 <: noact ion =: >
35 <: nextstatetmp ( $ n e x t s t a t e ) : >
36 <: end : >
37 }
38 ]
39

40 nextstatetmp [
41 <: match : >
42 <: n e x t s t a t e ( $nextstatename ) =: >
43 ctx−>changeState (
44 <: $root1afsm1context1 + $nextstatename
45 + " S t a t e " : > : : i n s t a n c e ( ) ) ;
46 <: n o n e x t s t a t e =: > ;
47 <: end : >
48 ]

Figure 7.35 C++ version of the template implementation.
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1 <: match a f s m 1 t r a n s i t i o n s 6 : >
2 <: [ t r a n s i t i o n ( $ s t a t e , $events ) , $ t r a n s i t i o n s ] =: >
3 template [
4 <: $root1afsm1context1 + $ s t a t e + " S t a t e . j ava " : > ,
5 c l a s s <: $root1afsm1context1 + $ s t a t e + " S t a t e " : >
6 extends <: $root1afsm1context1 + " S t a t e " : >
7 {
8 . . .
9 }

10 ]
11 <: $ t r a n s i t i o n s : >
12 <: [ ] =: >
13 <: end : >

Figure 7.36 Java snippet of the template implementation.

1 eventcode [
2 s t a t i c i n t <: $root1afsm1context1 + $ s t a t e + " S t a t e " + $event : >
3 ( s t r u c t <: $root1afsm1context1 + "FSM" : > ∗fsm ,
4 void ∗ o ) {
5 i n t r e t = 0 ;
6 <: match $ a c t i o n : >
7 . . .
8 <: n e x t s t a t e ( $nextstatename ) =: >
9 i f ( r e t < 0 )

10 fsm−>changeState ( fsm ,
11 &<: "m_" + $root1afsm1context1

12 + $root1afsm1error5 + " S t a t e " : > ) ;
13 e l s e
14 fsm−>changeState ( fsm ,
15 &<: "m_" + $root1afsm1context1

16 + $nextstatename + " S t a t e " : > ) ;
17 <: n o n e x t s t a t e =: >
18 i f ( r e t < 0 )
19 fsm−>changeState ( fsm ,
20 &<: "m_" + $root1afsm1context1

21 + $root1afsm1error5 + " S t a t e " : > ) ;
22 . . .
23 <: end : >
24 re turn r e t ;
25 }
26 ]

Figure 7.37 C snippet of the template implementation.
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7.6.6 Comparing the Old and the New Implementation

We compare both implementations on architectural level and code level. On
architectural level, the new implementation of NunniFSMGen is based on a
two-stage architecture, where the old implementation almost directly generates
code from the transition table in a single-stage architecture. The reimplementa-
tion offers better separation of concerns, it separates the model transformation
from the code generation. The first stage parses and rewrites the transition
table in order to get an abstract implementation of the state design pattern.
The second stage is responsible for generating the concrete code for the differ-
ent output languages. We expect that the more strict separation of concerns
reduces the work for adding a new output language than adding a new output
language in the original implementation. In the original implementation also
the model transformation has to be reimplemented. Furthermore, the original
code generator contains code clones between the different code emitters for
the different output language. These code clones are solved by introducing a
model transformation stage for the mutual shared code and leaving the case
specific code in the templates.

At code level, the original implementation shows a lot of entanglement of
different code artifacts in a single file. The presented examples of the original
implementations contain statements for the model transformation, statements
for the code generation phase and strings containing the object code in a single
file. The object code syntax has a lot in common with the meta language syntax,
which make it hard to distinguish the different code artifacts. The cocktail of
these different code fragments in a single file is confusing and is hard to read,
test and maintain. When looking to the templates of the new implementation,
it is still a complex part of the code generator. However, the template based
implementation shows a better syntactical difference between the meta code
and object code. Furthermore the object code is not encapsulated in single line
strings, so the object code is not obfuscated by brackets and quotes, making it
easier to read and review.

The Table 7.3 shows the metrics for the old implementation of NunniFSMGen
and the reimplementation. We measured all the nine files of the original
NunniFSMGen and only stripped the license block from the code. The set of
files measured of the reimplementation are the grammar definitions, model
transformations and templates. Total number of files of the reimplementation
is 19.

Considering Table 7.3 we see that the number of lines of codes without blanks
is almost halved, while the reimplemented ApiGen offers syntax safety. Con-
sidering the number of tokens of the reimplementation it is more than halved
with respect to the original implementation. Remarkable is that the average
number of non-alphanumeric characters per line is not altered. In comparison
with the original implementation of ApiGen, the code emitter classes of Nun-
niFSMGen show a lot of string statements containing object code. Since string
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Metric Original Reimplementation

Lines of Code 1,602 1,005

Lines of Code (without blank lines) 1,430 738

Tokens 22,024 10,438

Alphanumeric tokens 5,820 2,393

Non-alphanumeric tokens 9,189 4,762

White space tokens 7,015 3,283

Average number of tokens per line 15.4 14.14

Average number of non-alphanumeric tokens per line 6.43 6.45

Table 7.3 Metrics of NunniFSMGen and the reimplementation.

statements contain a lot of brackets and quotes, the result is that the ratio of
non-alphanumeric tokens per line is not lower in the original implementation.

7.6.7 Evaluation

We discussed the reimplementation of NunniFSMGen using templates. The
original implementation is a single-stage generator for each output language.
The reimplementation is based on a two-stage architecture, where the output
language is selected via another set of templates in the second stage.

The use of the two-stage approach and templates improved separation of
concerns. The model transformation is the same for all output languages and
only output language specific code is defined in the templates. The result
is that the size of the reimplementation is almost halved with respect to the
original implementation of NunniFSMGen. We expect that the more strict
separation of concerns reduces the work for adding a new output language
than adding a new output language in the original implementation, where
the model transformation also has to be reimplemented. On code level, the
use of templates results in better readable object code, since object code is not
embedded in println statements, which obfuscate the code by splitting it in
substrings.

Beside the improved maintainability, the use of grammars and the use of the
syntax safe template evaluator improve the correctness of the generated code
of the reimplemented NunniFSMGen. Syntax errors are earlier detected in
the reimplemented code generator, so users of the code generator are not
confronted with syntax errors in the generated code. This is in particular an
issue when the state machine is ported to a new output language. A transition
table can contain valid syntax for the first language, but can be incompatible
for the new output language. Finally, this case study shows that our templates
can be used for generating code based on a behavioral pattern for different
output languages.
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7.7 Dynamic XHTML generation

The last case study we discuss is dynamic XHTML [96] generation in web
applications. XHTML is a more restrictive version of HTML, so that it can be
defined by a context-free grammar. This case study covers code generation
during the usage of an application instead of using it for the development of
the application. Beside just-in-time compilation [77], code generation during
runtime plays an important role in contemporary applications communicating
via the Internet. These web applications generate (X)HTML pages on request,
which are interpreted by the browser to render the user interface of the
application. Since the emergence of web applications a lot of web application
frameworks, such as Java Spring Framework11, Ruby on Rails12, Django13, PHP
Zend14, and so on, have been developed. These web application frameworks
have in common that they are delivered with a kind of text-based template
evaluator to render the (X)HTML output.

The problem of these web applications is to ensure that the fixed (X)HTML
code in the templates does not contain syntax errors, which otherwise result
in errors in the browser. More seriously is that dynamic code generation and
the ability of browsers to execute code, like cascade style sheets (CSS) [16]
and JavaScript [48], can result in security breaches. This case study shows
the use of syntax safe templates to reduce the possibility of security bugs in
applications generating code during runtime. We implemented a small shout-
wall web application, where the security is enforced in a declarative manner
by grammar definitions and syntax safe template evaluation.

We start with a discussion of cross-site scripting and how to prevent it. After
that we present the implementation of the shout-wall web application and
show the approach to ensure the web application is no longer vulnerable for
cross-site scripting.

7.7.1 Cross-site Scripting

Cross-site scripting (XSS) is the class of web application vulnerabilities in which
an attacker causes a victim’s browser to execute untrusted JavaScript, CSS
or (X)HTML tags with the privileges of a trusted host [123]. This untrusted
code can collect data, change the look and/or change the behavior of the
original web site. It is the number one of the top 25 security bugs in web
applications in 2010

15. Even contemporary large web-services, like Google,

11 http://www.springsource.org (accessed on November 30, 2010)
12 http://rubyonrails.org (accessed on November 30, 2010)
13 http://www.djangoproject.com (accessed on November 30, 2010)
14 http://www.zend.com (accessed on November 30, 2010)
15 http://cwe.mitre.org/top25/ (accessed on May 25, 2010)

http://www.springsource.org
http://rubyonrails.org
http://www.djangoproject.com
http://www.zend.com
http://cwe.mitre.org/top25/
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YouTube, Twitter and Facebook, have to deal with cross-site scripting. The
main cause of cross-site scripting is the evolution of (X)HTML and the sub-
languages can result in execution of code in the browser such as JavaScript
and CSS. The way (X)HTML has evolved in the past decades resulted in a
liberal interpretation of the (X)HTML language. Browsers, such as Firefox and
MS Internet Explorer, even interpret (X)HTML code containing a lot of errors.
Furthermore the evaluation function of the browser executes JavaScript or CSS
embedded in the most exotic constructions, like hex encoding or code with
embedded tabs or new lines16.

The first requirement for a web application to be vulnerable for XSS is to have
some untrusted (user) input, which is used for rendering the output. In a basic
web application having a commit form and a result view this security bug is
already present natively. An attacker can post some untrusted code between
script or style tags in the commit form, which is interpreted by a browser
rendering the result page.

A common architecture for these web applications is the model-view controller
architecture as described in Section 7.2.3. The controller describes the behavior
of the web application and is usually some application specific (business) logic
written in a general purpose (script) language on top of a web framework,
such as Django, Java Spring Framework or Ruby on Rails. The controller
handles the web requests and returns the view to the web browser. The
web framework performs web application domain specific tasks such as URL
mapping, load balancing and so on. The information necessary for processing
these web requests is stored in the model; usually implemented as a relational
database. This database contains information loaded at deployment of the web
application, submitted via the web or inserted via another external source. The
view renders the web page and is most times implemented as a text template
system querying the objects provided by the controller.

The problem of cross-site scripting arises when data is literally stored in the
database and literally inserted in the rendered web page. An attacker can, for
example, submit a piece of JavaScript

<script>alert("Hello World");</script>

on a reaction form on a web site. It is stored in the database and rendered
on all the web pages of all viewers of that web site resulting in an annoying
pop-up message, see Figure 7.38.

Most web frameworks already offer prevention against this naive form of
cross-site scripting. The first solution is to scan the input committed via a web
form before it is inserted in the database, so the database only contains trusted
data. The problem of this approach is that it assumes that the database only
contains trusted data. This is a valid solution as long as the database itself is

16 http://ha.ckers.org/xss.html (accessed on July 20, 2010)

http://ha.ckers.org/xss.html


7.7 | Dynamic XHTML generation 191

Figure 7.38 JavaScript pop-up message.

not vulnerable for attacks, but that is in practice not a realistic assumption.
Besides that, alternative sources of data, such as RFID tags or URL parameters,
are often seen by developers as trusted data and directly stored in the database,
while they can contain malicious code [99]. At the end, we cannot trust any
data stored in the database, and at the level of the web page generator we
should consider all the data as untrusted to prevent cross-site scripting attacks.

The second solution against cross-site scripting provided by web frameworks
is based on the assumption that the data necessary to render the web page
can indeed not be trusted. Most attacks can easily be disarmed by replacing
the characters < and > to a non executable equivalent, &lt; and &gt;, before
inserting it in the final (X)HTML code. Contemporary template evaluators
provided by web frameworks escape potential hazardous characters before
the data is inserted in the web page by default. However, sometimes it is not
feasible to use this escaping of characters as it is required to render layout
information, like bold and italic tags, or it is even required to render a subset
of JavaScript such as a JSON tree. At that point the escape mechanism must
be turned off for that placeholder. As a result the web page generator is
susceptible for cross-site scripting attacks.

In case character replacement cannot be used, a specific cross-site scripting
filter or check can be defined. These filters are most times manually written in
the general purpose language used for the controller component of the web
application. These implementations contain a lot of unrelated details and the
filter specification is scattered over the code. An example of a small hand-
written filter is given in Figure 7.39

17. It removes <script> tags, javascript:
calls and onXxxxx attributes, like onLoad or onClick.

7.7.2 Preventing Cross-site Scripting

We present a solution for preventing cross-site scripting using syntax safe
templates. In short, our solution uses syntax safe templates to parse the XHTML

17 http://www.rgagnon.com/javadetails/java-0627.html (accessed on September 23, 2010)

http://www.rgagnon.com/javadetails/java-0627.html
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1 publ ic s t a t i c S t r i n g s a n i t i z e ( S t r i n g s t r i n g ) {
2 re turn s t r i n g
3 . r e p l a c e A l l ( " ( ? i ) < s c r i p t .∗? >.∗? </ s c r i p t .∗? >" , " " )
4 . r e p l a c e A l l ( " ( ? i ) < .∗? j a v a s c r i p t : .∗? > .∗? </.∗? >" , " " )
5 . r e p l a c e A l l ( " ( ? i ) <.∗?\\ s+on .∗? >.∗? </.∗? >" , " " ) ;
6 }

Figure 7.39 Hand-written cross-site scripting filter.

web-page including placeholders. The object code is already checked for well-
formedness with respect to the XHTML grammar. The placeholders in the
template are typed with the object language nonterminal they represent. This
object language nonterminal is used to check that these placeholders are
replaced by a valid (sub)set of the XHTML language during rendering the web
page. Most times the language produced by the nonterminal of the placeholder
is too broad to prevent cross-site scripting, as XHTML is defined as a language
where between its tags almost the complete XHTML language is available. We
introduced in Section 5.3.1 explicit syntactical typing of placeholders, which
can be used to limit the language the placeholder can produce. When this
subset of the XHTML language produced by the nonterminal of the placeholder
is disjoint from the set of browser executable code; the syntax safe evaluator
prevents inserting malicious code in the generated XHTML page.

Our solution to prevent injection of malicious code in the XHTML is based on
filtering the data before it is inserted. Filtering can be based on the principle
of black-listing or white-listing [123]. In case of white-listing, the set of allowed
sentences is specified, in case of black-listing every sentence is allowed except
the harmful ones, which are rewritten or removed by the filter. The problem
of filtering is that browsers handle XHTML liberally and not in a uniform
way, so covering the prevention of all manners of triggering the JavaScript and
CSS evaluator is hard and different per browser. Wassermann et al. [123] have
reviewed the source code and documentation of common browsers to obtain a
list of ways to write executable JavaScript or CSS code. This list depends on
the inspected version of the browser and for closed-source browsers this list is
probably not complete. Without knowing which sentences are triggering the
browser evaluation engine, it is hard, if not impossible, to ensure that cross-site
scripting is prevented.

We advocate that a white-list system is preferable over a black-listing approach.
White-list filters only include trusted syntax instead of excluding untrusted
syntax. In case of a black-list filter there is always a chance that some untrusted
syntax is not excluded. A white-list filter does not allow more syntax than
necessary. Furthermore, white-listing is less susceptible for browser updates,
as new ways of expressing executable JavaScript or CSS are most likely not
allowed, except if this new way is a subset of the white-listed sentences
grammar. We believe that testing, verifying or even proving that a context-free
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grammar only produces a language without harmful sentences is more feasible
than proving the completeness of black-list filters.

The white-list filter in our syntax safe template approach is based on a context-
free grammar for XHTML. Our XHTML grammar definition is a strict imple-
mentation of the XHTML specification [96] and more strict than the HTML
syntax accepted by most browsers. Using this grammar for the object language,
it is precisely defined which language a nonterminal can produce. When this
language of a nonterminal does not contain sentences resulting in triggering
the JavaScript or CSS evaluator, it can be safely extended with placeholder
syntax. The result of using syntax safe templates combined with this XHTML
grammar is that cross-site scripting protection is handled by the template
evaluator instead of by hand-written error-prone filters.

7.7.3 Example Web Application

We built a web application to demonstrate our solution for preventing cross-
site scripting attacks. This web application is a “shout wall” or “guest book”
where a visitor can post a message and a name. The following requirements
are defined for this example web application:

� For a post, the message field is mandatory and the name field is optional.

� Both fields, name and message, must contain human readable text,
XHTML tags are not allowed.

� Beside human readable text, the message field may contain a JSON tree
between script tags.

The last rule, allowing JSON data in the message field is for demonstration
purposes. This requirement makes it impossible to use a naive character
replacement to prevent cross-site scripting. Instead of rewriting characters, it
must be verified that only well-formed JSON, without any executable JavaScript
artifacts, is inserted in the output code.

The “shout wall” web application is implemented using the model-view con-
troller architecture. We start with the discussion of the implementation con-
troller and model. The controller class is listed in Figure 7.40 and extends
the Java servlet API [63]. A servlet class may respond to HTTP requests. For
this application, persistent storage of the data is not required and thus the
model is also declared in the controller class by the field messages, which is
initialized as an empty list. The model is based on ATerms 2.6.3, the input data
tree format used by Repleo. The ATermLibrary is used to ensure the ATerms
are well-formed.

The controller class implements two methods of the Java servlet API. The
first method handles the get requests and returns a web page based on an
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Metric Shout Wall

Lines of Code 168

Lines of Code (without blank lines) 149

Tokens 1,980

Alphanumeric tokens 649

Non-alphanumeric tokens 812

White space tokens 519

Average number of tokens per line 13.29

Average number of non-alphanumeric tokens per line 5.45

Table 7.4 Metrics of the Shout Wall web application.

instantiated template. The template evaluator is invoked when the doGet
is called. During evaluation of the template it will throw an exception if a
parse error occurs. This parse error is the result sentence in the input data
for message or name, which is not in the language defined by the grammar.
The latest added message is removed from the list if an exception occurs and
the web page is rendered again with a flag to display an error message. This
second template evaluator call in the catch block is not enclosed in a try-catch
statement, because the web application returns in a valid state when the last
added message is removed. The web application is started in a valid state, i.e. a
well-formed template and empty list of messages, only adding messages to the
list can result in an exception, so it is always the last added message causing
the exception.

The second method in the controller class handles the post request. It collects
the data from the post request and stores it in a message object. The ATmake
method of the ATerm factory is used to construct the message object to prevent
ATerm injection.

The controller class does not contain any specific logic to prevent HTML injec-
tion attacks. Data committed by the user is directly stored in the model without
any filtering. The only behavior responsible for the protection against cross-site
scripting is the try-catch block in the controller. The controller expects that the
template evaluator discovers the attack resulting in a generated exception.

The last discussed component of the “shout wall” web application is the view.
The requirement for the view is that it only returns a well-formed XHTML
page, otherwise it must throw an error. The template for the “shout wall” is
shown in Figure 7.41. It contains XHTML code for the submit form and two
match-replace placeholders; one for displaying an error message and one for
rendering the messages list. The generation of this messages list is potentially
vulnerable for cross-site scripting since substitution placeholders are used.
Table 7.4 shows the metrics of the two files of the shout wall web application.



7.7 | Dynamic XHTML generation 195

1 import java . io . ∗ ;
2 . . .
3

4 publ ic c l a s s X s s S e r v l e t extends HttpServ le t {
5 p r i v a t e ATermList messages ;
6 p r i v a t e aterm . pure . PureFactory termFactory = n u l l ;
7 p r i v a t e WebPageGenerator pagegenerator ;
8

9 publ ic X s s S e r v l e t ( ) {
10 termFactory = Sing le tonFac tory . g e t I n s t a n c e ( ) ;
11 pagegenerator = new WebPageGenerator ( ) ;
12 messages = termFactory . makeList ( ) ;
13 }
14

15 publ ic void doGet ( HttpServletRequest req , HttpServletResponse r es )
16 throws Servle tExcept ion , IOException {
17 r es . setContentType ( " t e x t /html " ) ;
18 P r i n t W r i t e r out = r es . getWri ter ( ) ;
19 ATerm inputdata = termFactory . make (
20 " data ( e r r o r ( noerror ) , messages ( <term > ) ) " , messages ) ;
21 S t r i n g html = " " ;
22 t r y {
23 html = pagegenerator . generate ( inputdata ) ;
24 } ca tch ( Exception e1 ) {
25 // remove e v i l message from messages
26 t h i s . messages = messages . getNext ( ) ;
27 inputdata = termFactory . make (
28 " data ( e r r o r ( detec ted ) , messages ( <term > ) ) " , messages ) ;
29 html = pagegenerator . generate ( inputdata ) ;
30 }
31 out . p r i n t l n ( html ) ;
32 out . c l o s e ( ) ;
33 }
34

35 publ ic void doPost ( HttpServletRequest req , HttpServletResponse r es )
36 throws Servle tExcept ion , IOException {
37 S t r i n g message = req . getParameter ( " message " ) ;
38 i f ( ! message . tr im ( ) . equals ( " " ) ) {
39 S t r i n g name = req . getParameter ( " name " ) ;
40 ATerm messageNode =
41 termFactory . make ( " message( < s t r > ,< s t r > ) " , name , message ) ;
42 t h i s . messages =
43 termFactory . makeList ( messageNode , t h i s . messages ) ;
44 }
45 t h i s . doGet ( req , r es ) ;
46 }
47 }
48

49 }

Figure 7.40 Java Controller of the “shout wall” web application.
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1 template [
2 <!DOCTYPE html PUBLIC "−//W3C//DTD XHTML 1 . 0 S t r i c t //EN"
3 " ht tp ://www. w3 . org/TR/xhtml1/DTD/xhtml1−s t r i c t . dtd">
4 <html xml : lang ="en " xmlns=" ht tp ://www. w3 . org /1999/xhtml">
5 <head>
6 < t i t l e >Cross−s i t e s c r i p t i n g prevention example</ t i t l e >
7 </head>
8 <body>
9 <form a c t i o n ="/ X s s S e r v l e t . j ava " method=" post ">

10 <h1>Write your message on the wall </h1>
11 <br /><br />
12 <b>Message (PCDATA or JSON): </b><br />
13 < t e x t a r e a name=" message " c o l s ="50" rows ="7" c l a s s =" textbox ">
14 </t e x t a r e a >
15 <br /><br />
16 <b>Name ( only PCDATA): </b><br />
17 <input type =" t e x t " name="name" s i z e ="48" c l a s s =" textbox ">
18 <br /><br />
19 <input type =" submit " value =" Submit " c l a s s =" textbox ">
20 <br /><br />
21 </form>
22

23 <: match data1error1 s o r t : XHtml−flow−item∗ : >
24 <: detec ted =: >
25 <b s t y l e =" c o l o r : red " >You t r i e d to post some forbidden t e x t !</b>
26 <br /><br />
27 <: noerror =: >
28 <: end : >
29

30 <: match data2messages1 : >
31 <: [ message ( $name , $ t e x t ) , $ t ] =: >
32 <b>message : </b><br />
33 <p> <: $ t e x t s o r t :PCDATA−JSON : > </p> <br />
34 <b>name: </b> <i > <: $name s o r t :PCDATA∗ :></ i > <br /><br />
35 <: $ t : >
36 <: [ ] =: >
37 <: end : >
38

39 </body>
40 </html>
41 ]

Figure 7.41 XHTML template of the “shout wall” web application.

The view is implemented using syntax safe templates, as a result the template
is parsed and the placeholders have a syntactical type. This syntactical type
is used by the evaluator to substitute the placeholders only with sentences
belonging to the language of that syntactical type, otherwise an error is gener-
ated. This behavior of syntax safe template evaluation is used to provide the
protection against cross-site scripting attacks. An error during the evaluation
process indicates that the input data contains a sentence which is not allowed
to replace the substitution placeholder.

The requirements state that the message may contain human readable text
or a JSON tree and that the name is optional and must be human readable
text. Human readable text without XHTML tags is provided by the XHTML
grammar as the PCDATA nonterminal. PCDATA may contain every character
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1 module JSON
2

3 exports
4 s o r t s JSON JSONTUPLE J S S t r i n g JSStrChar
5

6 context−f r e e syntax
7 " { " { JSONTUPLE " , " }∗ " } " −> JSON
8 " [ " { JSON " , " }∗ " ] " −> JSON
9 J S S t r i n g −> JSON

10 J S S t r i n g " : " JSON −> JSONTUPLE
11

12 l e x i c a l syntax
13 ~[\0−\31\n\ t \"\\\<\>] −> JSStrChar
14 [ \ " ] chars : JSStrChar∗ [ \ " ] −> J S S t r i n g

Figure 7.42 JSON Grammar definition.

except the characters <, > and &. We enforced the substitution placeholder
responsible for generating the name as PCDATA*, where the star list sort allows
to substitute it with no text. This protection against cross-site scripting attacks
is easy to implement and indeed already supported by most web template
systems. They provide automatic escaping for the three forbidden characters.

In order to show that syntax safe templates are more advanced than simple
escaping of some characters in a string, we required that the text of the
message may contain human readable text or a JSON tree. Escaping dangerous
characters cannot be used anymore as JSON trees between script tags contain
these characters. A grammar must be defined for JSON only producing valid
JSON sentences not resulting in execution in the browser. We defined a JSON
grammar in SDF, see Figure 7.42, conforming to the JSON standard [35]. Our
JSON grammar defines a subset of the original JSON language specification
by limiting the class of characters allowed for JSStrings. The greater-than
and smaller-than characters are explicitly disabled, otherwise it is possible to
embed a cross-site scripting attack inside a JSON tree.

JSON is not a part of the XHTML grammar, thus we mixed both languages by
defining the grammar module of Figure 7.43. This grammar module adds the
nonterminal PCDATA-JSON as alternative to the XHtml-Inline of the XHTML
grammar. The PCDATA-JSON nonterminal produces the language of sentences
containing the set of JSON trees between script tags and the set of sentences
provided by PCDATA*. The production rule adding PCDATA-JSON to the XHTML
grammar is annotated with avoid to specify that it should never be used if
another production rule can be applied. The priority of the added nonterminal
PCDATA-JSON is lower than the original alternatives for XHtml-Inline.

We specified the substitution placeholder for the text part message explicitly as
the syntactical type PCDATA-JSON. The template evaluator is allowed to replace
it by human readable text or JSON trees. The protection against JavaScript
and/or CSS injection is further handled by the syntax safe template evaluator
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1 module XHtml−Json
2

3 imports XHtml
4 imports JSON
5

6 exports
7 s o r t s PCDATA−JSON
8 context−f r e e syntax
9 PCDATA−JSON −> XHtml−I n l i n e { avoid }

10 PCDATA∗ −> PCDATA−JSON
11 "< s c r i p t " " >" JSON "</ s c r i p t >"
12 −> PCDATA−JSON

Figure 7.43 Adding JSON as alternative for XHtml-Inline.

using the grammar.

7.7.4 Practical Validation

In order to verify the unhackability of the shout wall, we published the shout
wall website including the source code and asked a number of web security
experts to find security breaches in the implementation. Two bugs were found
in the first shout wall implementation. First, Hayco de Jong discovered that
an input term containing a repeating pattern { "a", caused a crash of the
webserver. This was a result of a stack overflow in the parser and is solved by
fixing the stack overflow handling in the Java–to–C connection of the SGLR
parser.

The second security issue, discovered by Aram Verstegen, was a cross-site
scripting problem. The problem discovered by Aram is inherent in the JSON
language specification [35], which allows strings of the character class

~[\0-\31\n\t\"\\].

This character class allows the symbols < and >, JavaScript encapsulated in
a string is valid conform this grammar, but Firefox 3.0.19 interprets this as
JavaScript code stored in JSON strings instead of handling it as data. We solved
this security breach by limiting the character class for JSStrChar in Figure 7.42

by disallowing the symbols < and >. After these two errors were detected, no
further security issues were found.

As discussed, the use of grammars in a syntax safe templates does not prevent
all injection attacks. However, having formalisms for grammar definitions and
syntax safe templates provides a compact and understandable implementation
of web applications. The use of languages at a higher level of abstraction,
such as grammar definitions, prevents making silly errors resulting in security
breaches. It is easier to examine the allowed sentences of a grammar than
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inspecting manually written parsers and filters. When a security breach is
found, it is easier to repair in a grammar, since the formalism has a declarative
nature.

7.7.5 Related Work

A similar solution to prevent cross-site scripting and/or injection attacks is
syntax embeddings presented by Bravenboer et al. [25]. This approach prevents
injection attacks in sentences of an embedded language manipulated in some
host language. It uses a grammar based on the host language extended with
syntax of the embedded language to achieve the safety. An API is generated
from this grammar to provide the appropriate unparsing, escaping, and check-
ing of lexical values. The source code containing embedded syntax is translated
to a file without embedded syntax by replacing this foreign syntax with calls
to the generated API. Although our approach of preventing injection attacks
is based on the same principle of combining grammars as suggested in their
approach, there is a difference in the application of it. The application domain
of syntax embeddings is to increase printf based code generators and replace
the printf statements by object language artifacts. In contrast to our approach,
where injection attacks are prevented in the context of template based code
generators. This manifests itself by the fact that the grammars used for syntax
embeddings are based on a metalanguage grammar where object language
nonterminals are injected as alternatives, while in template grammars the
object language grammar is extended with metalanguage constructs.

7.7.6 Evaluation

We already mentioned that cross-site scripting attacks are nowadays the num-
ber one security bug in web applications. We showed that syntax safe templates
can provide a solution to prevent cross-site scripting without introducing a lot
of boilerplate and checking code. Grammars are used to specify allowed (sub)
sentences in the template instead of implementing the checks and filters for
the input data in the controller component. Filters and checks implemented
in a general purpose language contain a lot of detail, which make it hard to
write, to maintain, to test and to validate these manually implemented filters
and checkers, especially for complex languages. Obviously, also in our case
the level of protection against injection attacks is dependent on the quality of
the used grammars. However a context-free grammar definition is easier to
maintain than checkers implemented using imperative constructs.

Beside the improved security during evaluation, parsing both XHTML and
metalanguage provides easier development of these templates. We used an
IDE for editing syntax safe templates, which reports syntax errors directly in
the editor. Syntax errors in the object code and meta code are already detected
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before any web-page is generated. Syntax safe templates can of course be used
for preventing injection attacks when other output languages than XHTML
should be generated dynamically.

7.8 Conclusions

We discussed four case studies, targeting different application areas of code
generation. The case studies were chosen to validate that the metalanguage
in combination with the two-stage architecture results in less code, better
maintainable, and to show the benefits of syntax safety. For the first three
case studies, using code generation for application development, the use of a
two-stage architecture results in a better separation of concerns between the
model transformation and code emitters.

The compact metalanguage, as designed in Chapter 4, enforced us to use the
two-stage architecture. It is not possible to express all model transformations
in our metalanguage, as it is not possible to express calculations and store
intermediate values. This compact metalanguage complies with the recom-
mendation of Parr [92] to define a metalanguage to enforce strict separation of
model and view. Since the metalanguage is unparser-complete, it is not a limi-
tation of the code the templates can instantiate. This is empirically validated
by the four presented case studies.

The templates do not contain complex calculations on the model and the
model transformations do not need to contain object code artifacts. Especially
in the two case studies, ApiGen and NunniFSMGen, reimplementing a code
generator, the benefits of the two stage architecture based on term rewriting
and templates are reflected in the reduced number of lines of code. Term
rewriting provides a powerful computational paradigm to express the tree
transformations used in the model transformation stage, while the templates
only consider the output code rendering. The reimplemented code generators
are at least half the size of the original implementations. We showed in the
NunniFSMGen case study that the choice of the output language is made at
the template level, while the input data model is not changed. We expect that
the increased separation of concerns in the reimplementation results in easier
adding a new output language to our NunniFSMGen implementation than
adding a new output language to the original implementation.

Table 7.5 shows the metrics of all (re)implemented code generators. Considering
the size metric, WMSL is the biggest case study and the shout wall application
the smallest. More interesting is the average number of (non-alphanumeric)
tokens per line metric. The number of tokens per line is between 13.29 and
15.4, and the number of non-alphanumeric tokens per line is between 5.45

and 6.64. Considering the metrics of the original implementation of ApiGen
(see Table 7.2), the number of tokens per line is 11.5 and the number of non-
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Metric WMSL ApiGen NunniFSMGen Shout Wall

Lines of Code 2,956 2,975 1,005 168

Lines of Code (without blank lines) 2,435 2,361 738 149

Tokens 34,638 33,254 10,438 1,980

Alphanumeric tokens 9,792 7,572 2,393 649

Non-alphanumeric tokens 14,483 15,669 4,762 812

White space tokens 10,363 10,013 3,283 519

Average number of tokens per line 14.23 14.08 14.14 13.29

Average number of non-alphanumeric 5.95 6.64 6.45 5.45

tokens per line

Table 7.5 Metrics of the different case studies.

alphanumeric tokens per line is 4.62. Future work is to investigate the meaning
of these numbers. What does the alphanumeric tokens and non-alphanumeric
tokens ratio say about the readability of a piece of code? Is it possible to
categorize code based on these metrics, i.e. is the non-alphanumeric tokens per
line between 5.45 and 6.64 typical for code generators?

The role of syntax safety is not good quantifiable in the first three case studies,
as syntax safety directly warns a developer during writing templates in the
IDE. During implementing the templates we experienced these error messages
as very helpful. Furthermore, these syntax errors during code generation
are scarce, if not impossible, as we used model transformations based on a
term rewriting system requiring that the input and output are sentences of
a predefined grammar. However, the fourth case study shows that syntax
safety increases the safety of dynamic code generation in web applications.
Cross-site scripting is prevented without introducing a lot of boilerplate and
checking code. Grammars are used to specify allowed (sub) sentences in the
template instead of implementing the checks for the input data in the controller
component.

Syntax safe templates as presented in this thesis can be used in the different
application areas of the discussed case studies without any adaptation. This
shows that syntax safe templates are applicable in real world code generator
cases.





8
Towards Static Semantic Validation

B
ased on our previous work on detection of syntactic errors in Chapter 5,
in this chapter we study techniques to detect static semantic errors in
templates in order to prevent static semantic errors in the generated code.
Static semantic checks are defined for the metalanguage, for the object

language and checks for the situations where the object language is dependent on the
metalanguage. Moreover, we investigate the possibility of a re-usable approach: in
the same way the template syntax extends the syntax of a programming language,
our approach extends a static semantic checker for the corresponding programming
language. An implementation of a static semantic checker for PicoJava templates is
discussed. The requirements for a re-usable static semantic checker are shown based on
the experiences of implementing the static semantic checker for PicoJava templates. We
conclude with formulating research questions for future work.

8.1 Introduction

Based on our previous work on detection of syntactic errors in Chapter 5, in
this chapter we study techniques that go beyond the syntactic level. We want
to detect semantic errors in the template prior to its use for generation of code.
In this chapter we discuss our ideas for implementing semantic checkers for
templates.

We start with a discussion of static semantics of programming languages. Next,
an overview of static semantic checks for templates is given. After that, we
discuss our prototype of a static semantic checker for templates based on
attribute grammars. Finally related work, conclusions and future work are
presented.
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8.2 Static Semantics

A context-free grammar defines the syntax, i.e. a set of sentences belonging to a
language. The semantics of a language refers to the meaning of these sentences,
which must be preserved by compilers or other language implementations [91].
Following [91], the semantics of a language can be split up in a static part
and an operational part. The operational part describes the execution behavior
of program language constructs, while the static part describes restrictions
on the structure of the text of a program, which cannot be expressed using a
context-free grammar. This static semantic checking considers, amongst others,
the declaration of variables, use of variables and their types, and it manages the
typing semantics, which considers the types of all program phrases. Examples
of checks are detecting redefinitions of an identifier in the same scope or
detecting type errors such as the assignment of a value to a variable of the
wrong type. Static semantic checking is sometimes called type checking, which
is in fact a part of the static semantic checker. Implementing static semantic
checkers for compilers is discussed in [5] and static semantic checkers for
homogeneous meta-programming languages are discussed in [110].

Recall that a template is a sentence of a template language, which is an
extension of an object language. Original object language tools, such as its static
semantic checkers, cannot be used to process these templates. In case of the
heterogeneous template languages, as discussed in Section 5, the approaches of
Aho et al. [5] and Taha et al. [110] for implementing a static semantic checker
are not directly applicable. The approach of Aho et al. is aimed at implementing
static semantic checkers from scratch. The authors discuss implementations of
static semantic checkers based on directly embedding the checker in the parser
definition, not particular intended for re-usability, as the parsing and checking
are mixed in one stage [18]. The approach of Taha et al. is designed in the
context of homogeneous meta-programming. It is based on the assumption
that metalanguage and object language are identical and both languages use
the same type environment.

The aim of this chapter is to implement a static semantic checker for tem-
plate languages based on an arbitrary object language. We define two explicit
requirements:

� The reported errors are sound.

� The approach should re-use as much as possible of semantic checkers
and grammars of existing object language implementations.

Furthermore we aim for detecting as many errors as possible in a template,
but the approach does not necessarily need to find all the errors, i.e. being
complete. The proposed approach is not intended to statically guarantee that
a template always generates semantically correct code, but we consider extra
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checking and every detected error useful for preventing bugs in the generated
code. In the next section we discuss our ideas to validate the static semantic
properties of templates.

8.3 Defining Static Semantic Checkers

As we already discussed in the previous chapters, the syntax of programming
languages can be specified using formal grammars (see Section 2.2). Based on
the theory of formal grammars, formalisms, such as BNF [1] and SDF [55], are
developed to define syntaxes. They are widely used to define the syntax of
programming languages and to generate parsers from them.

As opposed to the case of syntax, there is no widely accepted standard for
describing the semantics [91]. The literature provides approaches to describe
the semantics of programming languages in a formal way. Examples are
modular structural operational semantics [85] and attribute grammars [73],
which we used for our implementation. However, the semantics of industrially
used programming languages are most times specified in an informal way [91].
For example, the specification of the languages C [64] and Java [49] consists
of English sentences. It is hard verify whether a description in the English
language covers every detail and is free of ambiguities. For instance, in the
description of the Java language a couple of semantic ambiguities have been
found [28]. When using different compilers, a semantic ambiguity can result
in different behavior or different errors.

In order to be usable, the specification of the semantics of a language must
be implemented in tools like a static semantic checker, compiler or interpreter.
Unfortunately, the lack of a standardized approach and accompanying for-
malisms to specify the (static) semantics of a programming language has the
consequence that these tools are most times implemented in an ad-hoc way.
The operational implementation can result in not well separated stages of
checking, code optimization or generation, or in a situation where the opera-
tional implementation of the static semantic checker is not easy to extend with
new rules. Re-using these implementations of static semantic checkers is thus
hard.

In the same way a template grammar can be composed from an object language
grammar and metalanguage grammar, we want to extend a static semantic
checker for the object language grammar to handle the meta code. We have
chosen to use JastAdd [54]. Two reasons underlie the choice of JastAdd. First, it
claims to offer modular specifications of compiler tools [38]. Second, a working
JastAdd based Java compiler implementation called JastAddJ is available [37].

The next section will discuss JastAdd. JastAdd is a contemporary Java-based
implementation of an attribute grammar system. The formalisms provided by
JastAdd are presented by means of the toy language PicoJava. The examples
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show how to define static semantic properties of a language. JastAdd does not
include a parser and assumes that an external parser is used to instantiate an
abstract syntax tree. SGLR is connected to JastAdd since we need this parser
to use our SDF based template grammars. The connection between SGLR and
JastAdd is discussed in Section 8.4.

8.3.1 Attribute Grammars with JastAdd

Attribute grammars, introduced by Knuth [73], are a formalism to describe
context-sensitive properties of constructs in a language in a declarative manner.
They are an extension of context-free grammars, where attributes can be
attached to nonterminals and semantic rules to the production rules. An
attribute is a property assigned to a nonterminal in the grammar and can
contain values dependent on its context in the syntax tree. Attributes occur in
two kinds: synthesized attributes and inherited attributes. Synthesized attributes
are the result of attribute evaluation rules and are used to pass information
upwards in the parse tree. Inherited attribute are passed down from parent
nodes. A parse tree for a sentence in the language of an attributed grammar has
the same form as a context-free parse tree. However, each node is additionally
decorated with the values of the attributes of the respective symbols.

A contemporary Java based implementation of an attribute grammar evaluator
is JastAdd [54]. JastAdd uses an object-oriented representation of the abstract
syntax tree in combination with reference attribute grammars. Reference at-
tribute grammars [53] are an extension of the original attribute grammars as
defined by Knuth [73]. The problem of the original attribute grammars is that
non-local dependencies are hard to specify, such as name analysis where prop-
erties of an identifier usage depend on properties of an identifier declaration.
Information must be manually propagated through all the nodes of the tree
via an environment attribute, where information can be stored and looked up.
This can become very complex in languages with complex scope rule, like
object-oriented languages. Besides that, the original attribute grammar is diffi-
cult to extend due to the propagation requirement of attributes. When adding
new constructs to the language, all nodes should propagate the environment
attribute. The result is that the environment attribute of the extended language
should be added to the new nodes and environment attribute of the new
nodes should be added to the nodes of the extended language. This introduces
tangling of the added language constructs and the existing language.

Reference attribute grammars offer a solution, which does not need an environ-
ment attribute in every node of the syntax tree. This way, a reference attribute
constitutes a direct link from one node to another node arbitrarily far away in
the syntax tree. Information can be propagated directly from the referred node
to the referring node, without having to involve any of the other nodes in the
syntax tree.
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1 {
2 boolean i ;
3 i = i + 7 ;
4 i = i + 3 ;
5 }

Figure 8.1 Simple PicoJava program.
Result of the template evaluated with
X([7,3])

1 {
2 boolean i ;
3 <: foreach $x in X1 do : >
4 i = i + <: $x : > ;
5 <: od : >
6 }

Figure 8.2 Template with a simple itera-
tion.

JastAdd uses an abstract syntax definition and a reference attribute grammar
module as input to create a language processing application. The abstract
syntax definition is converted to Java classes which are used for instantiating
the abstract syntax tree. The reference attribute grammar contains the equa-
tions and attributes for the production rules in the grammar. Aspect-oriented
programming [68] is used to weave the attribute grammar into the generated
classes. JastAdd does not provide a parser and expects that an external parser
is used to create an abstract syntax tree from concrete code. The combination
of object-oriented implementation of the abstract syntax tree and the weaving
of the attributes into these classes enables modularization of the different
components of a static semantic checker of a language.

8.3.2 PicoJava

We use a subset of Java, known as PicoJava as object language to illustrate
JastAdd. PicoJava1 is designed to demonstrate features of the attribute grammar
system JastAdd [54] by means of an implementation of name resolution and
type analysis for it. A PicoJava program consists of blocks, where blocks contain
statements, class declarations and variable declarations. An example of a PicoJava
program is shown in Figure 8.1. JastAdd is distributed with a static semantic
checker for PicoJava. We have extended PicoJava to make more interesting
examples. We included a conditional statement, integers and strings as basis
types, and a few binary and unary operators. Since we are interested in PicoJava
templates, an example of such a template is given in Figure 8.2.

Figure 8.3 shows a fragment of the PicoJava grammar. The constructor in-
formation is used to obtain an abstract syntax tree from a parsed PicoJava
program, which is used for connecting SGLR to JastAdd. The skip constructors
are implemented via an inheritance relation and not represented as nodes in
the abstract syntax tree. We discuss the connection of SGLR and JastAdd in
Section 8.4.

1 http://jastadd.org/jastadd-tutorial-examples/picojava-checker (accessed on November 30, 2010)

http://jastadd.org/jastadd-tutorial-examples/picojava-checker


208 Towards Static Semantic Validation

1 module PicoJava/syntax/PicoJava
2 imports b a s i c /Whitespace
3

4 hiddens
5 context−f r e e s t a r t−symbols Program
6

7 exports
8 s o r t s Program Block BlockStmt ClassDecl VarDecl
9 Stmt AssignStmt

10

11 context−f r e e syntax
12 Block −> Program { cons ( " Program " ) }
13 " { " BlockStmt∗ " } " −> Block { cons ( " Block " ) }
14 Stmt −> BlockStmt { cons ( " Skip_0 " ) }
15 Decl −> BlockStmt { cons ( " Skip_1 " ) }
16 TypeDecl −> Decl { cons ( " Skip_2 " ) }
17 VarDecl −> Decl { cons ( " Skip_3 " ) }
18 Access I d e n t i f i e r " ; " −> VarDecl { cons ( " VarDecl " ) }
19 ClassDecl −> TypeDecl { cons ( " Skip_4 " ) }
20 " c l a s s " I d e n t i f i e r ( " extends " IdUse ) ? Block
21 −> ClassDecl { cons ( " ClassDecl " ) }
22 AssignStmt −> Stmt { cons ( " Skip_5 " ) }
23 Access "=" Exp " ; " −> AssignStmt { cons ( " AssignStmt " ) }

Figure 8.3 Fragment of the PicoJava SDF definition.

8.3.3 Abstract Syntax Definition

The abstract syntax definition is a formalism to specify the regular tree gram-
mar belonging to the abstract syntax trees of a programming language. JastAdd
translates these abstract syntax definitions to a Java implementation of the
interpreter pattern, as discussed in Section 7.5.7. The interpreter pattern im-
plements an abstract syntax tree using a class hierarchy, where nonterminals
are abstract super classes and alternatives are concrete classes inheriting the
accompanying abstract super class. For each nonterminal in the abstract syntax
definition a class is generated with accessor methods.

The abstract syntax definition consists of the definition of nonterminals and
production rules. The production rules of the abstract syntax definition have
the following form:

<nonterminalName> : <inheritsFrom> ::= <productionRule>;

The nonterminalName will result in a new class nonterminalName, which may
inherit from another class (i.e. nonterminal). The production rule defines the
children of a node and may be empty. If non-empty, the production rule has
the following form:

... ::= <label1>:<nt1> <label2>:<nt2> ...;
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1 Program : : = Block ;
2 Block : : = BlockStmt ∗ ;
3

4 a b s t r a c t BlockStmt ;
5 a b s t r a c t Stmt : BlockStmt ;
6 a b s t r a c t Decl : BlockStmt : : = I d e n t i f i e r ;
7 a b s t r a c t TypeDecl : Decl ;
8

9 ClassDecl : TypeDecl : : = [ Superc lass : IdUse ] Body : Block ;
10 VarDecl : Decl : : = Type : Access I d e n t i f i e r ;
11 AssignStmt : Stmt : : = Var iable : Access Value : Exp ;

Figure 8.4 Fragment of the abstract syntax for PicoJava.

The label is used to identify a nonterminal field. Nonterminals can be specified
by the keyword abstract when only derived nonterminals are allowed to
instantiate.

Figure 8.4 shows a part of the abstract syntax of PicoJava. The names of the
nonterminals match the names used in the constructors of Figure 8.3. These
constructor names have all an accompanying production rule in JastAdd, except
for the productions with the constructor name of the form Skip_x. These rules
are not present in the abstract syntax definition. When an abstract syntax tree is
created by the parser, the nodes are labeled with the corresponding constructor
name. These nodes are related to the production rules in the abstract syntax
definition. The Skip_x rules reflect nodes that represent chain rules specified
in the SDF grammar, but are not necessary in the abstract syntax tree used by
JastAdd, since they can be intercepted by an inheritance relation. For example
the inheritance relation of Stmt is a subclass of BlockStmt.

8.3.4 Attributes

The abstract syntax definition is used to define the regular tree language of
the abstract syntax trees. In order to define compilers and static semantics
checkers, the abstract syntax definition needs to be extended with behavior. The
generated interpreter pattern can be extended with attributes and equations
via aspect-oriented programming (AOP) [68]. This AOP approach enables a
modular way for defining the semantics of the language.

The attributes are defined separately from the grammar. Three main modifiers
for these attributes are available. The inherited modifier, inh, is used for
passing information down the tree, the synthesized modifier, syn, is used
to pass information up the tree. Equations are written like Java assignment
statements preceded by the eq modifier. As mentioned, the abstract syntax
definition of JastAdd uses inheritance; attributes and equations added to a
superclass of a nonterminal are available to its subclasses. After classes are
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1 aspect TypeAnalysis {
2 syn TypeDecl Decl . type ( ) ;
3 syn TypeDecl Exp . type ( ) ;
4 . . .
5 // ∗∗∗Implementation∗∗∗
6 eq TypeDecl . type ( ) = t h i s ;
7 eq VarDecl . type ( ) = getType ( ) . dec l ( ) . type ( ) ;
8 . . .
9 eq B o o l e a n L i t e r a l . type ( ) = booleanType ( ) ;

10 . . .
11 eq BinOperator . type ( ) {
12 i f ( g e t l h s ( ) . type ( ) . isSubtypeOf ( getrhs ( ) . type ( ) )
13 || getrhs ( ) . type ( ) . isSubtypeOf ( g e t l h s ( ) . type ( ) ) )
14 {
15 // s p e c i a l case : i f the type of e i t h e r of them i s
16 // unknown , the known one should be the returned type
17 i f ( g e t l h s ( ) . type ( ) . isUnknown ( ) )
18 re turn getrhs ( ) . type ( ) ;
19 re turn g e t l h s ( ) . type ( ) ;
20 }
21 re turn unknownDecl ( ) . type ( ) ;
22 }
23 }

Figure 8.5 A fragment of the type rules.

generated using the abstract grammar, these attributes are incorporated into
these classes.

A part of the static semantic checker for PicoJava is shown in Figure 8.5. It
shows the synthesized attribute type for the classes Exp and Decl with the type
TypeDecl. An attribute gets its value from an equation, i.e. the attribute type
gets its value from the equation belonging to the specific class. Equations are
shown for the classes TypeDecl, VarDecl, BooleanLiteral and BinOperator.
The equation for TypeDecl and BooleanLiteral directly return the type of the
node. The VarDecl returns the type defined by its declaration and BinOperator
calculates its type based on the type of its operands.

8.4 Connecting SGLR and JastAdd

A parser is needed to get an instantiation of an abstract syntax tree. JastAdd
does not contain a parser and requires an external parser. In our template
evaluator we use the SGLR parser [117]. In this section we discuss how to
connect the SGLR parser to a JastAdd based static semantic checker.

SGLR generates a parse tree when it parses a text. An instantiation of the
abstract syntax tree in JastAdd is created by traversing this parse tree of SGLR.
By traversing the tree the constructor name defined in the SDF grammar is
used to select the JastAdd class via reflection. Therefore the constructor names
in SDF must match the nonterminal names in the abstract syntax definition of
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1 publ ic void ASTNode . c o l l e c t E r r o r s ( C o l l e c t i o n c ) {
2 f o r ( i n t i = 0 ; i < getNumChild ( ) ; i ++)
3 getChild ( i ) . c o l l e c t E r r o r s ( c ) ;
4 }

Figure 8.6 The object language error collection method.

JastAdd, otherwise a more complicated mapping scheme is necessary. There
is one special type of constructor, which is the Skip_x. A node with this
constructor is ignored by the traversal. The traversal continues with the children
of the skip node, but no JastAdd tree object is instantiated for this skip node.

JastAdd is delivered with a static semantic checker for PicoJava. We connected
the SGLR parser to this JastAdd based static semantic checker. This allows us
to check PicoJava programs using SDF as grammar formalism.

8.5 Static Semantic Checks for Templates

In a template, we have the metalanguage and the object language fragments
executed at different stages. The metalanguage is interpreted by the template
evaluator, while the object language is handled as data. The object language
defines the language of the code (fragments) to compose the output, which is
compiled or interpreted by an external tool. These different execution stages
reflect in the different levels of static semantic checks. We can distinguish three
levels of checks in a template:

� Metalanguage checks;

� Object language checks;

� Object language checks dependent on the metalanguage.

In this chapter we investigate the possibility to detect static semantic errors in
templates, where we use PicoJava as example object language. We extend the
PicoJava static semantic checker provided by the JastAdd project in order to
accept PicoJava templates [54]. The structure of the interpreter design pattern
of the AST allows us to declare these checks independently of each other.
Every class inherits from a generic node class, called ASTNode. Using aspect-
oriented programming, the node class is extended with three error collecting
methods, one for each kind of checks: collectErrors, collectIndepErrors
and collectPhErrors. The collectErrors method for the static semantic
errors of the object language is shown in Figure 8.6.

The classes implementing the ASTNode, i.e. the nonterminal classes, may over-
ride the error collecting method to implement a static semantic check. This
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mechanism allows us to mix different static semantic checkers for different
languages inside one tree, since a node not overriding the function executes
the default recursive behavior of the error collecting method.

In the rest of this section we will discuss these checks and give their imple-
mentation in JastAdd. For instance, by inspecting the template in Figure 8.2
we would like to detect that the attempt of adding integers to a boolean value
will cause a type error when compiling or interpreting the generated code
(Figure 8.1, line 2). Since JastAdd is distributed with an implementation of a
static semantic checker for PicoJava, we will use PicoJava as object language
for our templates. The first step is done by connecting the PicoJava templates
syntax definition to JastAdd. Establishing a connection between the parser and
the static semantic checker provides already out-of-the-box checking of the
object code of the template without placeholders, but placeholders are still not
handled. More details about the implementation of the checker for PicoJava
templates can be found in [95].

8.5.1 Metalanguage Checks

The metalanguage is independent of the object language and has its own
static semantic properties. A static semantic checker can be defined for the
metalanguage. This checker ignores the object code and only considers the
static semantic properties of the metalanguage.

In case of our metalanguage, as defined in Chapter 4, two levels of semantic
checks are possible. The first level contains the checks validating that the meta
code itself does not contain static semantic errors. The second level contains
the validation whether the described match-patterns belong to the regular
tree grammar of the input data. When this is not the case, it can lead to
match-pattern evaluation errors.

Our metalanguage is small, so we define a short, not necessarily complete, list
of semantic rules:

1. Identifiers of (sub)templates must be unique.

2. Meta-variables in a match-pattern must be unique.

3. The $root meta-variable is not allowed in a match-pattern.

4. Used meta-variables must be assigned in a parent match-pattern.

Rule 1 eliminates the possibility that more than one (sub)template can be
selected by a subtemplate invocation. Without this rule it is possible to define
multiple subtemplates with the same identifier resulting in nondeterministic
subtemplate selection. Observe that in a syntax safe template setting, it is
possible to use the same identifier for subtemplates having different root non-
terminals. The root nonterminal of the subtemplate can be used to distinguish



8.5 | Static Semantic Checks for Templates 213

between the different subtemplates having the same identifier. However, for
readability, we prefer not to allow this option, since selecting a subtemplate
based on its root nonterminal is not explicit.

Rule 2 eliminates multiple declarations of a meta-variable in a matching-pattern.
It is not allowed to redefine a meta-variable in the same scope. Our symbol
table mechanism (see Section 4.3) does not allow the same key multiple times
in a single scope. Besides that, in functional programming it is not unusual to
support non left-linear matching [83], i.e. meta-variables with the same identifier
must match against the same sub patterns to result in a successful match.
While our metalanguage is not designed to behave in this way, we still want to
prevent possible confusion and, hence enforce uniqueness of meta-variables in
a match-pattern.

Rule 3 checks whether the $root meta-variable is assigned in a match-pattern.
This meta-variable is reserved for the template evaluator and it is assigned
to the root of the original input data by the template evaluator. Overriding
this meta-variable in a match-pattern will break the intention of the $root
meta-variable to contain the original input data tree.

Rule 4 requires that every meta-variable is assigned in a parent match-pattern
before it is used. If a meta-variable is not assigned, the template evaluator
should return an error.

While the semantic rules discussed above can be used to check the meta code
without external information, the following checks use the input data tree
grammar to validate the meta code. The meta code of a template describes, via
the match-patterns and tree path queries, a kind of tree automaton accepting
input data trees. This automaton should at least accept all the trees defined by
the input data tree grammar. In case the input data language produces more
trees than the template accepts, there is a set of input data trees resulting in
an error during template evaluation. The following errors should be detected
using the tree path queries, match-patterns and input data grammar to verify
that the template accepts the input language:

5. A tree path query does not specify a valid path for the nonterminal n.

6. The match-pattern does not match any tree produced by nonterminal n.

7. The match-replace placeholders should contain a match rule for every
alternative of a nonterminal n defined in the input data grammar.

The fifth rule and the sixth rule check whether the tree path query or match-
pattern can match a (sub)tree belonging to the input data language defined
by its regular tree grammar. The checks detect tree path queries which do not
define a valid path, resulting in an error during evaluation, and detect useless
match-patterns.
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1 publ ic void P h I d e n t i f i e r . c o l l e c t I n d e p E r r o r s ( C o l l e c t i o n c ) {
2 super . c o l l e c t I n d e p E r r o r s ( c ) ;
3

4 i f ( ! getMatchVar . matchvars ( ) . c o n t a i n s A l l (
5 g e t I d e n t i f i e r ( ) . getTreeQuery ( ) . matchvars ( ) ) ) {
6 C o l l e c t i o n remainder = g e t I d e n t i f i e r ( ) . matchvars ( ) ;
7 remainder . removeAll ( getMatchPattern ( ) . matchvars ( ) ) ;
8 e r r o r ( c , " the meta−v a r i a b l e s "+ remainder . t o S t r i n g ( ) +
9 " have been used t h a t were not declared " ) ;

10 }
11 }

Figure 8.7 Collecting undeclared meta-variables.

A match-replace placeholder defines match-rules for a nonterminal n of the
input data grammar. The seventh rule checks whether a match-replace has a
match-rule for every alternative of the nonterminal n. In case a match-replace
placeholder does not cover all possible patterns of nonterminal n, it is possible
that a (sub)tree in the input data has no accompanying match-rule, resulting
in an evaluation error.

Figure 8.7 shows the implementation of Rule 4. This rule requires to check
whether a value is assigned to the given meta-variable. If the meta-variable
is not assigned, an error is reported. Verification is performed by collecting
the declared meta-variables and checking in the placeholders using the meta-
variables whether they are available in this set. An error is generated when a
meta-variable is not present in the declared collection.

This check method overrides collectIndepErrors defined in the class
ASTNode, and thus called by this error collection traversal. Object language
nodes are ignored by the traversal, since these node classes do not override the
collectIndepErrors method. Scoping is automatically solved, since the col-
lection is extended with declared meta-variables when the traversal descends
in the tree.

8.5.2 Object Language Checks

The specification of the object language should provide its context-free gram-
mar, the static semantics and operational semantics. Often a compiler or
interpreter for the object language implements the static semantic checks. Ex-
amples of object language checks are uniqueness of variables checks and type
checks [5]. In case a template has no placeholders, it is a sentence of the object
language. In that case the object code can be checked by an existing static
semantic checker for the object language.

However, in case a template contains placeholders the static semantic checker
of a compiler or interpreter cannot be used, as it has no support for the
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1 . . .
2 // I d e n t i f i e r
3 P h I d e n t i f i e r : I d e n t i f i e r : : = TreeQuery ;
4 P h I f I d e n t i f i e r : I d e n t i f i e r : : = TreeQuery MatchPattern
5 Then : I d e n t i f i e r Else : I d e n t i f i e r ;
6

7 // BlockStmt∗
8 PhBlockStmt : BlockStmt : : = TreeQuery ;
9 PhIfBlockStmt : BlockStmt : : = TreeQuery MatchPattern

10 Then : BlockStmt∗ Else : BlockStmt ∗ ;
11 PhForeachBlockStmt : BlockStmt : : = MatchVar TreeQuery
12 BlockStmt ∗ ;
13 . . .

Figure 8.8 Fragment of the abstract syntax for the placeholders of PicoJava.

placeholders. To handle templates, the static semantic checker needs to be
extended with the semantic properties of the metalanguage. What does it mean
to have placeholders in object code? In case a placeholder is added to the object
language grammar, it not only inherits the syntactical properties of the object
language nonterminal, but also its semantic properties. Since the final value of
the placeholder depends on the input data, the use of placeholders will cause
disturbances within the semantics of the object language. Extra rules must be
defined to specify the meaning of a placeholder in that part of the language.
We show a solution based on inheritance to add the semantics of an object
language nonterminal to a placeholder nonterminal.

The static semantic checker for the language PicoJava is already provided
by the JastAdd project. It has support for basic name resolution, dot name
resolution, inheritance name resolution, and type analysis. Before the PicoJava
checker can handle the added template constructs, the placeholder nodes must
be added to the abstract syntax definition of the object language. Placeholders
are added to the context-free grammar of the object language via injections
(chain rules), at the abstract syntax level this is done via inheritance. Beside the
syntactical properties, placeholders also inherits the semantic properties of the
nonterminals of the object language. Indeed, a placeholder acquires all features
the corresponding object language nonterminal possesses and adds specific
features pertaining to the metalanguage. This allows us to re-use an existing
static semantic checker by inheriting the placeholders from an object language
nonterminals in the abstract syntax definition. Figure 8.8 shows the definition
of the placeholders. We have to instantiate every placeholder manually for
each nonterminal extended with placeholder syntax, just as the definition of a
template grammar.

At the moment a placeholder inherits an object language nonterminal, it not
only inherits it syntactical structure, but also its semantic properties. Since a
placeholder does not have a value, but is a hole, the use of placeholders will
cause disturbances within the semantics of the object language. It is necessary
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1 aspect PhNameResolution {
2 eq P h I d e n t i f i e r . getName ( ) =
3 " < : " + getTreeQuery ( ) . value ( ) + " : > " ;
4 eq P h I d e n t i f i e r . checkName ( S t r i n g name) =
5 name . equals ( getName ( ) ) ;
6 }

Figure 8.9 Extra equations for substitution placeholder.

to override the definition of the attributes such that the object language checker
can deal with it.

Take for example the extension of PicoJava with a substitution placeholder
parameterized with the Identifier nonterminal. In the object language the
identifier is used to link the type of the declaration to the type of the expression
where the identifier is used. This link is based on the name of the identifier and
when having a placeholder the same mechanism must be used. The substitution
placeholder does not provide a name, but holds a metalanguage expression.
Since the same expression used in different places reduces to the same value,
it is possible to use the literal expression as identifier. This semantic property
of the identifier placeholder is implemented via the code of Figure 8.9.

Adding placeholders to an object language can introduce syntactic ambiguities,
see Section 6.7. For example, a Java template can contain an ambiguity where
it is not clear whether a constructor declaration or method declaration is
defined. Sometimes an ambiguity can be solved using syntactical typing, see
Section 5.3.1. However, this is not always an option. When an ambiguity is
found the parser instantiates a list node, containing the different sub parse
trees. The SGLR parser instantiates these nodes on the fly, while parsing
a template. In order to handle these ambiguities by JastAdd, we add for
every nonterminal a special production rule to represent the ambiguity. We
used a filter mechanism based on type-driven disambiguation to solve the
ambiguities [114]. This mechanism checks for every ambiguity whether it
has type errors or other semantic errors and if so, it removes that sub parse
tree. When no correct subtree can be found, an error is generated. In case of
templates it is always possible that multiple sub parse trees are correct. At
that moment only a warning is generated, where the template developer can
choose to solve the ambiguity manually by syntactical typing the placeholders.

8.5.3 Object Language Checks Dependent of Metalanguage

The last type of static semantic checks is where the metalanguage influences the
object language. This occurs when a match-replace placeholder, a conditional
placeholder or an iteration placeholder is applied. These placeholders do not
insert a string from the input data tree into the code, but depending on values
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in the input data tree a piece of object code is enabled or disabled. The essence
of these static semantic checks is that they should validate which combinations
of object code are allowed. As it heavily depends on the input data whether the
generated code will contain an error, these checks generate warnings instead
of errors.

An example is a template with two not nested conditional placeholders, where
the first one declares a variable and the second one uses that variable. The
second conditional placeholder may only insert its code in the output code,
when also the first conditional placeholder is enabled. Whether the first con-
ditional placeholder inserts code in the output code is independent of the
second conditional. A checker should generate a warning that the second
conditional only may yield code when the first conditional placeholder yields
its code. The static semantic checker for the input language should check that
this combination is not possible.

In this section, we only consider the semantics of the conditional placeholder
and iteration placeholders. The operational semantics of a conditional place-
holder and iteration placeholder are simpler than the match-replace place-
holder, which implies that the static semantic properties are also easier.

The conditional placeholder includes the then part or the else part into the
code depending on the condition and the iteration includes zero or more time
its body. For the conditional placeholder, it is checked that the then part or the
else part are allowed. In case of the iteration placeholder we check whether
it is allowed to include the body zero, one, or more times. For example, one
can imagine that a variable declaration inside an iteration placeholder with a
fixed identifier will lead to an error if the code is generated more than once.
We check for this property, and return a warning when the identifier of the
variable declaration is not a placeholder.

An example of such a check is to verify whether identifiers are a placeholder
within an iteration placeholder. One can imagine that a variable declaration
inside an iteration placeholder with a fixed identifier will lead to an error if
the code is generated more than once. We check for this property, and return
a warning when the identifier of the variable declaration is not a placeholder.
A warning is generated since it is possible that some input data trees will
not result in generated code with an error. For example when an iteration
placeholder with a variable declaration with fixed identifier is generated one
time. However, this is against the nature and goal of an iteration placeholder.
Therefore we generate a warning. The check, shown in Figure 8.10, searches in
the body of the iteration placeholder for variable declarations. If one is present,
and the variable declared is not a placeholder, a warning is generated.
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1 publ ic void PhForeachBlockStmt . c o l l e c t P h E r r o r s ( C o l l e c t i o n c ) {
2 super . c o l l e c t P h E r r o r s ( c ) ;
3 f o r ( i n t i = 0 ; i < getNumBlockStmt ( ) ; i ++) {
4 i f ( getBlockStmt ( i ) i n s t a n c e o f VarDecl ) {
5 i f ( ! ( ( ( VarDecl ) getBlockStmt ( i ) ) . g e t I d e n t i f i e r ( )
6 i n s t a n c e o f P h I d e n t i f i e r ) )
7 warning ( c , " Var iab le d e c l a r a t i o n s in a Foreach " +
8 "may only be about placeholders " ) ;
9 }

10 }
11 }

Figure 8.10 Checking function for the iteration placeholder of BlockStmt.

8.6 Related Work

Our template syntax is used as an add-on to an arbitrary object language.
Our goal is to guarantee the syntax safety and semantic safety as much as
possible, while being flexible with respect to the choice of the object language.
Some languages support built-in template-like constructions. Examples are
C++ templates or Java generics, in which classes can be parameterized by type
information. The use of C++ templates is type safe, but this is only guaranteed
at instantiation time. Another concept of built-in meta-programming is staged
compilation, for example in a system like MetaML [110], where code can be
executed in different execution stages. The type safety is ensured by extending
the ML type checker with new scope rules for the staging levels. However,
programs with stage annotations are complete and contrary to templates all
information is available. C++ templates, Java generics or explicit staging are
part of the language. Therefore, syntax checking and semantic checking is
offered by the compiler. Constructions embedded in the language are only
able to generate safe code for the language itself and the parameterizable
nonterminals are fixed in the language specifications. While our aim is to be
flexible with respect to the choice of the object language and to allow adding
template constructs to every nonterminal in the object language.

Extending a static semantic checker to support multiple languages is presented
in [26] for embedded domain specific languages (DSL) in some general purpose
language (GPL). They connect the type systems of the DSL to the type system
of the GPL by adding rules to the static semantic checker. This is possible since
the DSL code is an abbreviation for GPL code and the additional static semantic
rules reflect the mapping of the static semantic part. Compilation units contain
DSL and GPL code, and they are complete, i.e. when the DSL is rewritten to
GPL code it can be compiled and executed. In contrast to embedded DSLs,
templates are incomplete code and some external information is necessary
to complete them. Incomplete code implicates missing information and thus
missing information for the static semantic checking.
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Another safe template-like approach is SafeGen [61]. SafeGen is a tool to
build Java generators. It uses an automatic theorem prover to prove the well-
formedness of the generated code for all possible inputs of a generator. This
approach heavily depends on the assumption that the input is a valid Java
program and the knowledge of the Java type system. The template developer
can define placeholders (cursors) to obtain data from the Java input program.
Those placeholders must contain constraints based on their use in the template.
A prover is used to check the constraints, which ensures that the template
cannot generate ill-formed code. The approach of SafeGen is applicable for
other input languages and object languages, but the implementations are not
generic, since they depend heavily on the chosen (input and object) languages.

An approach for creating static semantic checkers for templates is discussed by
Heidenreich et al. [57]. Instead of using grammars, they use (meta) models with
OCL to express the structure and semantics of the object and metalanguage.
They can extend an object language model with template constructs in a
modular way. Their approach does not provide a solution to handle ambiguities,
which is a requirement when handling templates. Furthermore, they require
that the input data contains subtrees with the (syntactical) type of the object
language where it is injected, while we allow a weak link between the external
input data and object language.

8.7 Future Work

We discussed the implementation of a static semantic checker for PicoJava
templates using JastAdd. Further research is necessary to scale up the approach
to Java templates using JastAddJ and to improve re-usability of static semantic
checkers. These topics are discussed in the following sections.

8.7.1 Checking Java Templates using JastAddJ

We implemented a static semantic checker for PicoJava templates. Since Pi-
coJava is a small language for demonstration purposes, we want to scale up
our approach and implement a static semantic checker for Java templates.
Doing this with JastAdd seems a feasible option, since JastAddJ, a Java 1.4
compiler including a static semantic checker using JastAdd, is available [37].
Furthermore a complete SDF grammar exists for Java 1.4.

Adding template constructs to Java and re-using the static semantic checker
JastAddJ seems obvious, but due to the construction of JastAddJ it was not pos-
sible to obtain a static semantic checker for Java templates based on JastAddJ.
The Java SDF grammar and JastAddJ are not compatible. The differences can
be classified in two categories:
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� rewriting during parsing;

� instantiation of the Static Semantic Checker.

The abstract syntax definition of JastAddJ does not fully comply with the
Java Language Specification [49]. On several places production rules are com-
bined. The reason can be found in the fact that it is easy to pass attributes
up and down through the tree in JastAdd, but not between sibling nodes.
For example, the method_header and the method_body in Java are not hierar-
chically defined in the Java Language Specification, which makes it difficult
in the method_body to obtain a list of formal parameters provided by the
method_header. In JastAddJ the parser already combines these two nodes in a
single node, called method_declaration.

Furthermore, during parsing the static semantic checker is called to obtain
context related properties of nodes. For example, while parsing JastAddJ uses
the static semantic checker to resolve the full qualified names of types.

In our approach the separation between the parser and the static semantic
checker is absolute. The interference of the parser and JastAddJ is not a
problem for connecting SGLR and JastAddJ in order to check Java code, but
it has it effects on mapping the parse tree to JastAddJ. In the ideal situation
the constructor names can directly be mapped to the JastAddJ classes, just as
we did in the PicoJava implementation. This is not possible and the mapping
must handle the rewriting and use of the static semantic checker to complete
fields [95].

The previously mentioned grammar differences and transformations on the
tree during the traversal phase make JastAddJ unsuitable to be extended
with placeholder semantics. For the introduction of placeholders, the grammar
definitions of the concrete syntax and the abstract syntax need to facilitate a one-
to-one transformation of the parse tree. A transformation during the mapping
will result in mappings on the occurrence of the placeholders. Since the location
of the placeholders in the parse tree is important for the semantic properties of
a placeholder, any transformation will result in additional dependencies on
the placeholders. This does not imply that extending the Java static semantic
checker of JastAddJ with placeholders is impossible. This merely indicates
that design decisions have been made in JastAddJ that are not beneficial for
extension it with rules for placeholders, with as key issue the lack of strict
separation between parser and static semantic checker.

8.7.2 Re-usability

The re-usability of existing static semantic checkers is also a concern. Im-
plementing a static semantic checkers from scratch is a tough and a time
consuming task, which should be avoided whenever possible. We showed that
the semantics of an object language can be extended in a modular fashion
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when new language constructs are added. However, we are not convinced that
a generic approach is possible, which extends every static semantic checker of
a given object language with placeholder constructs. Strict separation between
the parser and static semantic checker is necessary to support re-use. When
this requirement is not met, it is hard to re-use the static semantic checker
and either a lot of work must be redone or a separate mapping code must be
written. The question is, whether it is possible to define static semantic checkers
in such way that they are re-usable. What is the right formalism to implement
static semantic checkers? If re-using an existing static semantic checker is not
an option, then it could be feasible to implement a static semantic checker for
commonly used object languages, like XHTML and Java.

8.8 Conclusions

This chapter discussed our approach to implement static semantic checkers
for templates. We discussed the implementation of a static semantic checker
for PicoJava templates. The presented checks are sound, as a detected error
will result in an error in the generated code or during template evaluation, but
not complete. There is still a chance that the generated code contains static
semantic errors and thus the template contains errors. In the first place, the
level of completeness of checking a template depends on the object language
checker. Subsequently, the amount of effort put in the specification of the
placeholder semantics added to the original checker influences the level of
checking. Finally, the more placeholders a template contains, the less a static
semantic checker for templates can be used to guarantee that the output code
is correct with respect to static semantics.

The use of the attribute grammar system JastAdd allows us to extend the
original PicoJava static semantic checker without a lot of modifications. A kind
of modularity is observed, where the static semantic checks for the metalan-
guage are independent of the original static semantic checker. Although, the
requirements are stricter to re-use a static semantic checker than to re-use a
context-free grammar. The static semantic checker must be strictly separated
from the parser.
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Conclusions

W
e studied the application of templates in the context of code generation in
order to improve the quality of templates and to improve the quality of
the code they instantiate. This chapter summarizes the contributions of
this thesis. We provide suggestions for future work and we end with the

final conclusions providing answers on the research questions from Chapter 1.

9.1 Contributions

Chapter 1 introduced the context of this thesis; the application of templates
in the context of code generation. Code generators can be used to transform
specifications at a higher level of abstraction to implementations at a lower
level of abstraction. The use of specifications at a higher level of abstraction
improves the manageability of the code and/or design of a program [46].

Code generators can be implemented using different approaches and tech-
niques, including templates. A template is a text that contains placeholders,
which are replaced to obtain an output text. Contemporary template evaluators
are text-based, not offering protection against syntax errors in the template
and the code they instantiate.

The central research question is how the quality of template based code genera-
tors can be improved. Quality, in general, is a broad notion and our scope is
limited to the technical quality of templates and generated code. We focused
on improving the maintainability of template based code generators and the
correctness of the generated code. This is facilitated by the three main contribu-
tions provided by this thesis. First, the maintainability of template based code
generators is increased by specifying the following requirement for our meta-
language. A too limited metalanguage can only be used in a limited number
of cases. A too powerful metalanguage increases the risk of writing complete
computer programs in a template, breaking the strict separation of concerns
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between model and view [92]. We used the theory of formal languages to spec-
ify our metalanguage. This contribution is discussed in Sections 9.1.1 and 9.1.2.
Second, we ensure correctness of the templates and generated code. We have
improved the (syntactical) correctness of the templates and the output code,
discussed in Sections 9.1.3 and 9.1.4. Protection against syntax errors in the
template provides a shorter development cycle, as code does not need to be
generated to detect syntax errors in the object code. We have also presented
static semantic checking of templates, discussed in Section 9.1.6. Third, the
presented theory and techniques are validated by case studies, discussed in
Section 9.1.5. These case studies show application of templates in real world
applications, increased maintainability and syntactical correctness of generated
code. The next sections discuss the contributions of this thesis.

9.1.1 Unparser Completeness

Our goal was to define a metalanguage that does not provide more compu-
tational power than necessary, without being too limited for code generation
purposes. Chapter 3 discussed the requirements of a metalanguage for code
generators to accomplish this goal. The requirements are based on the relations
between concrete syntax, abstract syntax trees and their grammars. The map-
ping of abstract syntax to concrete syntax is called an unparser. The unparser
should have two specific properties: parsing and desugaring its output results
in the original abstract syntax tree of the used input, and the unparser can in-
stantiate all meaningful sentences of the output language. The second property
requires that an unparser has no limitation on the sentences it can instantiate.
A metalanguage capable to express an unparser is powerful enough to express
code generators.

The main contribution of this chapter is that a linear deterministic top-down
tree-to-string transducer fulfills the requirements to implement an unparser. A
metalanguage for implementing unparsers should at least be powerful enough
to express a linear deterministic top-down tree-to-string transducer, otherwise
some sentences of the output language cannot be instantiated. We call the
ability of a metalanguage to implement an unparser unparser-complete. In case a
metalanguage is beyond unparser-completeness, for example Turing complete,
it increases the risk of writing complete programs in a template.

9.1.2 Our Metalanguage

We defined our metalanguage in Chapter 4. This metalanguage provides the
constructs necessary to be unparser-complete. We provide two kernel con-
structs in our metalanguage: subtemplates and match-replace placeholders.
We also introduced three derived constructs: substitution placeholders, itera-
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tion placeholders and conditional placeholders. These are abbreviations for
combinations of subtemplates and match-replace placeholders.

In order to prevent writing model transformations in templates, our meta-
language cannot change the input data and it does not support complex
expressions. This enforces a clear separation of model and view.

We compared our metalanguage with the metalanguages of the related tem-
plate systems ERb, Velocity, JSP and StringTemplate. The selection of the
template systems is based on the different metalanguages and availability of
a working template evaluator. ERb, JSP and Velocity offer a Turing complete
metalanguage, while StringTemplate only supports basic functionality, like sub-
templates, substitution, iteration and conditions. We implemented an unparser
for the PICO language in every system to compare their metalanguages on ex-
pressiveness. PICO is a toy language supporting most features of a context-free
grammar. We looked at the limitations of the input data processing capabilities
of the metalanguage and the limitations to instantiate the output code.

The StringTemplate implementation of the PICO unparser has the fewest
lines of code, but in contrast with our metalanguage, StringTemplate cannot
directly accept all regular trees. It can only handle unordered trees. An extra
transformation is necessary to convert the input data from an ordered tree to an
unordered tree. This conversion uses ordered lists to represent the unordered
children of a node, where the StringTemplate meta code can fetch an indexed
element using a number of list operations.

ERb, Velocity and JSP come with a Turing complete metalanguage. How-
ever, they do not have a block scoping mechanism for the meta-variables.
A workaround for proper handling of meta-variable scopes was necessary
to implement the PICO unparser. The consequence of this workaround was
additional boilerplate code. Furthermore, rich metalanguages increase the
chance of undesired programming in templates, which can result in tangling
of concerns. For example, it is undesired to specify model transformations
inside a template.

Our metalanguage can handle all input data trees defined by top-down de-
terministic tree automata and it can instantiate all context-free languages,
while separation of concerns is enforced as model transformations cannot be
expressed.

9.1.3 Syntactical Correctness of Templates

In Chapter 5 the topic is the syntactical correctness of templates. We have
presented the construction of grammars containing production rules for the
object language and metalanguage in a template. Syntax errors in the object
code and meta code of a template are detected while parsing the template
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instead of dealing with syntax errors at compile time of the generated code.
The complete template is parsed, and thus checked for syntax errors. The
syntax of the templates is not different from text templates, as a result they
provide the same user experience.

The template grammar is obtained by combining the object language grammar
and placeholder grammar by adding the placeholder syntax as alternative to
the object language nonterminals. The construction of such a template gram-
mar is generic. Only a combination grammar connecting both languages has
to be defined manually. Since we use SDF, this combination grammar uses
module parameters to specialize the placeholder syntax for a specific nontermi-
nal, instead of redefining the placeholder syntax for every nonterminal. The
advantage of this approach is the ease of using off-the-shelf object language
grammars [70].

9.1.4 Syntax Safe Evaluation

Parsing templates on its own is not sufficient to guarantee that the output of
the template evaluator is a sentence of the output language. In Chapter 6 we
presented syntax safe evaluation. Syntax safe evaluation provides a mechanism
to detect syntax errors during the generation of the code. It prevents that
placeholders in a template are being replaced by syntactical incorrect constructs.
This guarantee is achieved by checking that the root nonterminal of the sub
parse tree replacing a placeholder is equal to the object language nonterminal
where the placeholder is applied.

The template evaluator is independent of the object language and does not
need to be changed when another object language is used. It is even possible
to use object code containing multiple languages, like Java with embedded
SQL. We have implemented these ideas in a tool called Repleo.

9.1.5 Validation of Practical Applicability

In order to validate the real world applicability of syntax safe templates,
Chapter 7 presented four case studies using templates. The case studies were
chosen to show that our metalanguage in combination with the two-stage
architecture results in better maintainable code and to show the benefits of
syntax safety in different situations. The two-stage architecture exists of an
explicit model transformation stage and code emitter stage.

The first case study covered the generation of web application back-ends. The
generated code is based on a three tier MVC architecture, the code generator
must instantiate code for the different layers expressed in different languages
from a single input model. The second case study was the reimplementation
of ApiGen. ApiGen is an application to generate a Java API for creating,
manipulating and querying tree-like data structures represented as ATerms. It
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covers the generation of Java code based on the Factory pattern and Composite
pattern. The third case study was the reimplementation of NunniFSMGen.
NunniFSMGen is a tool to generate finite state machines from a transition
table. It covers the generation of behavioral code for different output languages.
The generated state machine is based on the state design pattern. The final
case study showed that syntax safety can improve the safety of dynamic code
generation in web applications. It covers code generation during the usage of
an application, where syntax safety is used to reduce the possibility of security
breaches.

For the first three case studies, the use of a two-stage architecture results in
a better separation of concerns between the model transformation and code
emitters. In case of ApiGen and NunniFSMGen it was possible to compare
the original implementation with the reimplementation. The last case study
shows the benefits of syntax safety when generating XHTML in a dynamic
web application.

The compact metalanguage, as designed in Chapter 4, enforced us to use the
two-stage architecture. It is not possible to express all model transformations in
our metalanguage, as calculations cannot be expressed and intermediate values
cannot be stored. The metalanguage is unparser-complete; it is not a limitation
of the code the templates can instantiate. This is empirically validated by the
four presented case studies, since they cover a broad range of code generation
application areas.

The benefits of the two-stage architecture are reflected in the reduced number
of lines of code. The reimplemented code generators are between two and
three times as small as the original implementations. The NunniFSMGen case
study shows that the choice of the output language is made at the view level,
i.e. the templates, while the input data for the templates is not changed.

The last case study shows that syntax safety increases the safety of dynamic
code generation in web applications. Cross-site scripting is prevented without
introducing a lot of boilerplate code and checking code. Grammars are used
to specify allowed (sub) sentences in the XHTML template instead of imple-
menting the checks for the input data in the controller component of a web
application.

Syntax safe templates as presented in this thesis can be used in the different
application areas of the discussed case studies without any adaptation. This
shows that syntax safe templates are applicable in real world code generator
cases.

9.1.6 Towards Static Semantic Checking

We also showed that is possible to check static semantic properties of templates.
Static semantic checks are defined for the metalanguage, for the object language
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and checks for the situations where the object language is dependent on the
metalanguage.

We implemented a prototype of a static semantic checker for PicoJava tem-
plates using the attribute grammar system JastAdd. The main reason for
using JastAdd is that it claims to offer modular specifications of compiler
tools [38]. We specified a prototype of a static semantic checker for PicoJava
templates based on JastAdd. PicoJava is used as object language since JastAdd
is distributed with a static semantic checker for it.

The presented checks are sound, as a detected error will result in an error in
the generated code or during template evaluation, but not complete. There is
still a chance that the generated code contains static semantic errors and thus
the template contains errors. In the first place, the level of completeness of
checking a template depends on the object language checker. Subsequently, the
amount of effort put in the specification of the placeholder semantics added to
the original checker influences the level of checking.

The use of the attribute grammar system JastAdd allows us to extend the
original PicoJava static semantic checker without a significant number of
modifications. A kind of modularity is observed, where the static semantic
checks for the metalanguage are independent of the original static semantic
checker. In that case, it is a requirement that the static semantic checker is
strictly separated from the parser.

9.2 Future Work

We illuminated a number of issues playing a role in the use of templates for
code generators. This section presents directions of future work in this context.

First, we did not study the performance of the Repleo implementation. We
used an average contemporary desktop computer1 to generate the code in the
case studies. The code was generated between a few seconds and a couple of
minutes depending on the size of the templates, complexity of the templates
and size of the input data. When generating a large amount of source code,
the execution time is not a bottleneck, but the current implementation will not
scale when syntax safe evaluation is used in dynamic code generation systems.
Future work is to investigate optimization of the syntax safe evaluator in order
to be usable in industrial dynamic code generation, like web applications. Our
hypothesis is that using partial evaluation [44] to reduce the amount of work
to be done at runtime results in fast template evaluation, without losing the
syntax safe properties.

Second, our aim was to increase the level of fidelity of using templates, without
being experienced as more complex than text templates. Although we did not

1 Intel R© CoreTM
2 CPU 2.40 GHz with 2 GB RAM.
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experience an increased difficulty, the research question is still open, whether
our syntax safe templates and metalanguage are indeed as complex as the
metalanguages offered by text templates.

The last topic of future work is to to extend the work of static semantic checkers
for templates. Chapter 8 discussed an implementation of static semantic checker
for PicoJava templates. The future work related to static semantic checkers
is divided in scaling up the approach to Java templates using JastAddJ and
improving re-usability of static semantic checkers.

First, adding template constructs to Java and re-using an existing implementa-
tion of static semantic checker of Java called JastAddJ seems obvious, but due
to the construction of JastAddJ it was not possible to obtain a static semantic
checker for Java templates based on JastAddJ. The Java SDF grammar and
JastAddJ are not compatible. Rewriting during parsing and instantiation of the
static semantic checker while parsing are the causes of this incompatibility.

Second, the re-usability of existing static semantic checkers is also a concern.
We showed that the semantics of an object language can be extended in a
modular fashion when new language constructs are added. However, we are
not convinced that a generic approach is possible, which extends every static
semantic checker of a given object language with placeholder constructs. The
question is, whether in the general case it is possible to define static semantic
checkers in such way that they are re-usable.

9.3 Final Conclusions

Recurring on the central research question, whether the quality of template
based code generators can be improved. This thesis showed that the quality
of template based code generators can be increased comparing to text-based
templates using the theory of formal languages. The central research question
is refined in six more specific research questions, see Chapter 1.

The topic of the first and second research question is the metalanguage. The
metalanguage does not need more computational power than a linear deter-
ministic top-down tree-to-string transducer offers to be able to instantiate
context-free languages. In the context of a two-stage architecture, this limited
computational power enforces a strict separation of concerns between the
model transformer and the code emitters.

The syntactical correctness of the templates and generated code is the topic
of the third and fourth research question. The use of grammars for templates,
including production rules for the object language, prevents syntax errors
in the template and in the generated code. Debugging templates is better
supported as the origin of the (syntax) error can be better determined. A side-
effect of syntax safe template evaluation is out-of-the-box protection against
code injection attacks.
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The fifth research question deals with practical applicability. Four case studies
showed that syntax safe templates are suitable in real world code generator
cases.

The topic of the sixth research question is static semantic checking of templates.
We discussed object language checks, metalanguage checks and checks for the
situations where the object language is dependent on the metalanguage. We
implemented a prototype of a static semantic checker for PicoJava templates
using attribute grammars. The use of attribute grammars leads to re-use of the
original PicoJava checker.
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Summary

An Illumination of the Template Enigma

Software Code Generation with Templates

C
reating software is a process of refining a concept to an imple-
mentation. This process consists of several stages represented
by documents, models and plans at several levels of abstraction.
Mostly, the refinement process requires creativity of the program-

mers, but sometimes the task is boring and repetitive.

This repetitive work is an indication that the program is not written at the
most suitable level of abstraction. The level of abstraction offered by the used
programming language might be too low to remove the recurring code. Code
generators can be used to raise the level of abstraction of program specifications
and to automate the repetitive work. This thesis focuses on code generators
based on templates.

Templates are one of the techniques to implement a code generator. Templates
allow extension of the syntax of a programming language, enabling generative
programming without modifying the underlying compiler. Four artifacts are
involved in a template based generator: templates, input data, a template eval-
uator and output code. The templates we consider are a concrete (incomplete)
representation of the output document, i.e. object code, that contains holes, i.e.
the meta code. These holes are filled by the template evaluator using informa-
tion from the input data to obtain the output code. Templates are widely used
to generate HTML code in web applications. They can be used for generating
all kinds of text, like e-mails or (source) code. In this thesis we limit the scope
to the generation of source code.

The central research question is how the quality of template based code genera-
tors can be improved. Quality, in general, is a broad notion and our scope is
limited to the technical quality of templates and generated code. We focused
on improving the maintainability of template based code generators and the
correctness of the generated code. This is facilitated by the three main contribu-
tions provided by this thesis. First, the maintainability of template based code
generators is increased by specifying the following requirement for our meta-
language. Our metalanguage should not be rich enough to allow programming
in templates, without being too restrictive to express some code generators. We
used the theory of formal languages to specify our metalanguage. Second, we
ensure correctness of the templates and generated code. Third, the presented
theory and techniques are validated by case studies. These case studies show
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application of templates in real world applications, increased maintainability
and syntactical correctness of generated code.

Our metalanguage should not be rich enough to allow programming in tem-
plates, without being too restrictive to express some code generators. The
theory of formal languages is used to specify the requirements for our metalan-
guage. As we only consider to generate programming languages, it is sufficient
to support the generation of languages defined by context-free grammars.
This assumption is used to derive a metalanguage, that is rich enough to
specify code generators that are able to instantiate all possible sentences of
a context-free language. A specific case of a code generator, the unparser, is
a program that can instantiate all sentences of a context-free language. We
proved that an unparser can be implemented using a linear deterministic top-
down tree-to-string transducer. We call this property unparser-completeness.
Our metalanguage is based on a linear deterministic top-down tree-to-string
transducer.

Recall that the goal of specifying the requirements of the metalanguage is to
increase the maintainability of template based code generators, without being
too restrictive. To validate that our metalanguage is not too restrictive and
leads to better maintainable templates, we compared it with four off-the-shelf
text template systems by implementing an unparser. We have observed that
the industrial template evaluators provide a Turing complete metalanguage,
but they do not contain a block scoping mechanism for the meta-variables.
This results in undesired additional boilerplate meta code in their templates.

The second contribution is guaranteeing the correctness of the generated code.
Correctness of the generated code can be divided in two concerns: syntactical
correctness and semantical correctness. We start with syntactical correctness
of the generated code. The use of text templates implies that syntactical cor-
rectness of the generated code can only be detected at compilation time. This
means that errors detected during the compilation are reported on the level
of the generated code. The developer is required to trace back manually the
errors to their origin in the template or input data.

We believe that programs manipulating source code should not consider the
object code as text to detect errors as early as possible. We present an approach
where the grammars of the object language and metalanguage can be combined
in a modular way. Combining both grammars allows parsing both languages
simultaneously. Syntax errors in both languages of the template will be found
while parsing it.

Moreover, only parsing a template is not sufficient to ensure that the generated
code will be free of syntax errors. The template evaluator must be equipped
with a mechanism to guarantee its output will be syntactically correct. We
discuss our mechanism in short. A parse tree is constructed during the parsing
of the template. This tree contains subtrees for the object code and subtrees for
the meta code. While evaluating the template, subtrees of the meta code are
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substituted by object code subtrees. The template evaluator checks whether the
root nonterminal of the object code subtree is equal to the root nonterminal
of the meta code subtree. When both are equal, it is allowed to substitute the
meta code. When the root nonterminals are distinct an accurate error message
is generated. The template evaluator terminates when all meta code subtrees
are substituted. The result is a parse tree of the object language and thus
syntactically correct. We call this process syntax safe code generation.

In order to validate that the presented techniques increase maintainability
and ensure syntactical correctness, we implemented our ideas in a syntax
safe template evaluator called Repleo. Repleo has been applied in four case
studies. The first case is a real world situation, where it is required to generate
a three tier web application from a data model. This case showed that multiple
layers of an applications defined in different programming languages can be
generated from a single model. The second case and third case are used to
show that our metalanguage results in a better maintainable code generator.
Our metalanguage forces to use a two layer code generator with separation
of concerns between the two layers, where the original implementations are
less modular. The last case study shows that ensuring syntactical correctness
results in the prevention of cross-site scripting attacks in dynamic generation
of web pages.

Recall that one of our goals was ensuring the correctness of the generated
code. We also showed that is possible to check static semantic properties of
templates. Static semantic checks are defined for the metalanguage, for the
object language and checks for the situations where the object language is
dependent on the metalanguage. We implemented a prototype of a static
semantic checker for PicoJava templates using attribute grammars. The use of
attribute grammars leads to re-use of the original PicoJava checker.

Summarizing, in this thesis we have formulated the requirements for a meta-
language and discussed how to implement a syntax safe template evaluator.
This results in better maintainable template based code generators and more
reliable generated code.





Samenvatting

An Illumination of the Template Enigma

Software Codegeneratie met Sjablonen

H
et creëren van software is een proces waarin een concept steeds
verder wordt verfijnd tot een implementatie. Dit proces bestaat
uit meerdere stappen bestaande uit documenten, modellen en on-
twerpen op verschillende abstractieniveaus. Het verfijnen van een

concept naar een implementatie vergt vaak creativiteit van de programmeurs,
maar kan ook saai en herhalend werk zijn.

Het herhalende werk is een indicatie dat een programma niet wordt beschreven
op het juiste abstractieniveau. Het abstractieniveau van de gebruikte program-
meertaal kan te laag zijn om de herhalende code te vermijden. Codegeneratoren
kunnen gebruikt worden om het abstractieniveau van programmaspecificaties
te verhogen en het herhalende werk daarmee te automatiseren. Dit proefschrift
richt zich op het gebruik van codegeneratoren op basis van sjablonen.

Het gebruik van sjablonen is een van de technieken om een codegenerator te
implementeren. Een sjabloon breidt een programmeertaal uit om het geschikt te
maken voor codegeneratie zonder de oorspronkelijke compiler (vertaler) aan te
passen. Vier artefacten spelen een rol in een sjabloongebaseerde codegenerator:
sjablonen, invoerdata, een sjabloonevaluator en de uitvoercode. De sjablonen,
zoals wij ze beschouwen, zijn concrete (onvolledige) representaties van het
uitvoerdocument, de zogenaamde objectcode, waarin zich gaten bevinden, de
zogenaamde metacode. Deze gaten worden gevuld door de sjabloonevaluator
met de informatie uit de invoerdata. Het resultaat van de sjabloonevaluator
is de uitvoercode. Sjablonen worden al veelvuldig toegepast om HTML te
genereren in webapplicaties en kunnen worden toegepast voor het genereren
van allerlei soorten tekst, zoals e-mails of broncode. Wij beperken ons echter
in dit proefschrift tot het genereren van broncode.

De centrale onderzoeksvraag is hoe de kwaliteit van sjabloongebaseerde codegenera-
toren kan worden verbeterd. Kwaliteit is een algemeen begrip en we beperking ons
tot de technische kwaliteit van sjablonen en gegenereerde code. We richten ons
op de onderhoudbaarheid van sjablonen en de correctheid van de gegenereerde
code. Dit is gefaciliteerd door de drie bijdragen van dit proefschrift: Ten eerste
om de onderhoudbaarheid van sjablonen te verbeteren hebben we de volgende
eis gesteld aan onze metataal. Onze metataal zou niet rijk genoeg moeten
zijn om programmeren toe te staan, zonder dat de metataal een beperkende
factor is om bepaalde codegeneratoren uit te drukken. We hebben formele
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taaltheorie toegepast om onze metataal te specificeren. Ten tweede garanderen
we de correctheid van sjablonen en gegenereerde code. Als laatste hebben we
met behulp van casussen aangetoond dat de gepresenteerde technieken indus-
trieel toepasbaar zijn, de onderhoudbaarheid verbeteren en de syntactische
correctheid van de gegenereerde code garanderen.

Een metataal zou niet rijk genoeg moeten zijn om programmeren toe te staan,
zonder dat het een beperkende factor is om bepaalde codegeneratoren uit
te drukken. We hebben formele taaltheorie gebruikt om de eisen voor de
metataal te bepalen. Aangezien we ons beperken tot programmeertalen, is
het voldoende om talen te ondersteunen die worden beschreven door een
contextvrije grammatica. Deze aanname is gebruikt om de metataal af te
leiden. Deze metataal is rijk genoeg om codegeneratoren te specificeren die
in staat zijn alle mogelijke zinnen van een contextvrije taal te instantiëren.
Een specifiek geval van een codegenerator, een unparser (de-ontleder), is een
programma dat alle mogelijke zinnen van een contextvrije taal kan produceren.
We hebben aangetoond dat een top-down lineaire deterministische boom–naar–
tekenreeksomzetter krachtig genoeg is om een unparser uit te drukken. We
noemen zijn eigenschap unparservolledig (de-ontledervolledig). Onze metataal
is gebaseerd op deze boom–naar–tekenreeksomzetter.

Het doel van de beperkte metataal is om de onderhoudbaarheid van sjablo-
nen te vergroten, zonder dat de taal een beperking oplegt. Om te valideren
dat onze metataal krachtig genoeg is en de onderhoudbaarheid is verbeterd
hebben we onze metataal vergeleken met de metataal van vier bestaande
tekstgebaseerde sjabloonsystemen door middel van het implementeren van
een unparser. Hoewel de industriële aanpakken waren voorzien van een Tur-
ingvolledige metataal zijn ze echter niet uitgerust met een geschikt scoping-
mechanisme voor de metavariabelen. Dit resulteert in ongewenste additionele
metacode in hun sjablonen.

De tweede bijdrage is het garanderen van de correctheid van sjablonen en
gegenereerde code. Correctheid kan worden onderverdeeld in twee zaken:
syntactische correctheid en statisch semantische correctheid. We beginnen met
discussie van het garanderen van de syntactische correctheid. Het gebruik van
tekstgebaseerde sjablonen impliceert dat de syntactische correctheid van de
gegenereerde code pas gedetecteerd kan worden tijdens de compilatie ervan.
Dit betekent dat de foutmeldingen verwijzen naar de gegenereerde code. De
ontwikkelaar zal handmatig de oorsprong van de fout moeten achterhalen in
het sjabloon of in de invoerdata.

Om fouten eerder te ontdekken moet het voorkomen worden dat programma’s
die broncode manipuleren de objectcode beschouwen als tekst. We hebben een
aanpak gepresenteerd welke de grammatica van de objecttaal en de metataal
modulair combineert. Het resultaat is een grammatica die in staat is beide talen
in een sjabloon tegelijk te ontleden. Syntaxisfouten, in zowel de objectcode als
metacode, in een sjabloon worden gevonden tijdens het ontleden.
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Enkel ontleden van een sjabloon is nog geen garantie dat gegenereerde code
vrij zal zijn van syntaxisfouten. De sjabloonevaluator dient uitgerust te zijn
met een mechanisme om dit te garanderen. Ons mechanisme werkt op de
volgende wijze. Het ontleden van een sjabloon resulteert in een ontleedboom.
Deze boom bevat subbomen van de objectcode en subbomen van de meta-
code. Tijdens evaluatie worden de subbomen van de metacode vervangen
door objectcodesubbomen. Hierbij controleert de sjabloonevaluator of de top
van de nieuwe objectcodesubboom hetzelfde type heeft als de top van de
metacodesubboom. Als dit het het geval is, mag de objectcodesubboom de
metacodesubboom vervangen. In het andere geval wordt een accurate fout-
melding gegenereerd. Het resultaat is een ontleedboom van de objecttaal en
dus syntactisch correct. Deze eigenschap noemen we syntaxisveilig.

Om te valideren dat de gepresenteerde technieken de onderhoudbaarheid
verbeteren en syntactische correctheid garanderen, hebben we onze ideeën
geïmplementeerd in een syntaxisveilige sjabloonevaluator genaamd Repleo.
Repleo is gebruikt voor een viertal casussen. De eerste casus belicht de gen-
eratie van een gebruikelijk situatie waar een webapplicatie op basis van drie
lagen gegenereerd wordt uit een datamodel. Deze casus toont dat meerdere
lagen van de applicatie gebaseerd op verschillende programmeertalen kunnen
worden gegenereerd vanuit hetzelfde model. De tweede en derde casus zijn
gebruikt om aan te tonen dat onze metataal leidt tot verbeter onderhoud-
bare codegeneratoren. Onze metataal dwingt het af om een codegenerator
op te bouwen in twee strikt gescheiden lagen, waar de originele codegenera-
toren minder modulair zijn. De laatste casus toont aan dat syntaxisveiligheid
resulteert in het vergroten van de veiligheid van dynamisch gegenereerde
webpagina’s.

Om terug te komen op correctheid van de gegenereerde code. We hebben ook
laten zien dat het mogelijk is om de statisch semantische eigenschappen van
sjablonen te checken. Statisch semantische checks zijn gedefinieerd voor de
metataal, de objecttaal en checks voor situaties waar de objecttaal afhankelijk is
van de metataal. We hebben een prototype van een statisch semantische checker
voor PicoJava sjablonen geïmplementeerd op basis van attribuut grammatica’s.
Het gebruik van attribuut grammatica’s heeft geleid tot hergebruik van de
originele PicoJava checker.

Tot slot, in dit proefschrift hebben we de eisen voor een metataal opgesteld
en besproken hoe een syntaxisveilige sjabloonevaluator kan worden geïmple-
menteerd. Dit resulteert in beter onderhoudbare codegeneratoren en betrouw-
baardere gegenereerde code.





Curriculum Vitae

PERSONALIA
Bastiaan Jeroen Arnoldus
Geboorteplaats: Amstelveen, Nederland
Geboortedatum: 9 oktober 1981

OPLEIDINGEN
Software Engineering (doctorandus) (2004-2005)

Universiteit van Amsterdam, Amsterdam
Diploma behaald in 2005

Elektrotechniek (ingenieur) (2000-2004)
Hogeschool van Amsterdam, Amsterdam
Propedeuse behaald in 2001

Diploma behaald in 2004

Gymnasium (1994-2000)
Keizer Karel College, Amstelveen
Diploma behaald in 2000

WERKERVARING
Hogeschool van Amsterdam, Amsterdam (2005-heden)

Promovendus
Domein Media, Informatie en Creatie
Opleidingen Informatica en Technische Informatica

BJA Electronics, Amstelveen (2005-2010)
Eigenaar
Ontwikkeling van maatwerk elektronica en software
voor theater en musicalproducties





Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network

Reliability. Faculty of Science, UU.
2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite
Populations in Dynamic Environments.
Faculty of Biomedical Engineering,
TU/e. 2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Math-
ematics and Natural Sciences, UL.
2005-12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verification
of Hybrid Systems using Simulation Re-
lations. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2005-
14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty of
Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics
and Natural Sciences, UL. 2005-17



P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transforma-
tion of Source Code by Parsing and
Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2006-
04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-
07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-
08

B. Markvoort. Towards Hybrid Molecu-
lar Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty
of Sciences, Division of Mathematics
and Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2006-14



T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising Inter-
face Specifications. Faculty of Mathe-
matics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty
of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-
04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-06

M.W.A. Streppel. Multifunctional Ge-
ometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07
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