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Preface

Templates are used to generate all kinds of text, including computer code. The last decade,

the use of templates gained a lot of popularity due to the increase of dynamic web applica-

tions. Templates are a tool for programmers, and implementations of template engines are

most times based on practical experience rather than based on a theoretical background.

This book reveals the mathematical background of templates and shows interesting find-

ings for improving the practical use of templates. First, a framework to determine the

necessary computational power for the template metalanguage is presented. The template

metalanguage does not need to be Turing-complete to be useful. A non-Turing-complete

metalanguage enforces separation of concerns between the view and model. Second, syn-

tactical correctness of all languages of the templates and generated code is ensured. This

includes the syntactical correctness of the template metalanguage and the output language.

Third, case studies show that the achieved goals are applicable in practice. It is even shown

that syntactical correctness helps to prevent cross-site scripting attacks in web applications.

We apologize in advance for any errors that may have occurred in this text, and we would be

grateful to receive any comments, or suggestions about improvements for further editions.

B.J. Arnoldus

AMSTERDAM, January 2012

M.G.J. van den Brand, A. Serebrenik

EINDHOVEN, January 2012

J.J. Brunekreef

UTRECHT, January 2012
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Chapter 1

Introduction

A code generator is a program being able to generate code based on an input specification,

see Figure 1.1. Such programs are written to automate repetitive work, but also when a

system needs to instantiate textual representations of a model, like HTML pages in web

applications. Code generators are a subclass of metaprograms; the set of programs analyz-

ing or manipulating other programs [Sheard (2001)]. A code generator can be written in an

ad-hoc fashion or using sophisticated methodologies from compiler research.

Code generation is a projection of input data to output code. This input data belongs to a

language with its own syntax and semantics, independently defined of the code generator.

A code generator translates the input data into another representation, often a representation

at a lower level of abstraction [Floridi and Sanders (2004)]. This output code can be ev-

erything, from machine code, in case of compilers, to code of a programming language, in

case of computer-aided software engineering or model-driven engineering tools [Schmidt

(2006); Favre (2004)]. During this translation, the code generator uses pieces of output

sentences to construct the output code.

Writing code generators is not a trivial task. First, the input language has to be designed.

This language should provide a complete vocabulary at the right level of abstraction for the

problem domain. Defining this vocabulary requires an extensive knowledge of the problem

domain. This requirement is not limited to writing code generators, but also for writing

understandable and reusable domain specific libraries. Designing the input language is out

Input

specification

Code

generator
Output code

Fig. 1.1 A code generator.

1
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2 Code Generation with Templates

of the scope of this book [Watt (2004)], but a well-defined input language definition is a

crucial success factor for a code generator.

Second, writing and understanding a code generator is hard, as it contains code artifacts

executed at different stages. It contains code executed at generation time, metacode, and

code used as building blocks for the output code, the object code. A programmer has to

be aware of the different execution stages of the different code artifacts. More confusing,

artifacts belonging to different execution stages are mixed.

Finally, finding errors in code generators without tool support is difficult. Errors in the

metacode are detected during compilation or during the execution of the code generator.

Errors in the object code are harder to find and are detected when the output code is com-

piled or executed. In many code generators the object code is represented as strings without

any internal structure [Sheard (2001)]. Debugging these errors is time consuming, since the

code generator has to be corrected, it has to be compiled, code has to be generated and fi-

nally the generated code must be tested. Debugging tools for the metacode do not help,

because the object code is handled as data, not as programs.

This chapter presents a number of approaches to implement a code generator, including

templates. This book will focus on code generators using templates. Theories and con-

cepts are presented and discussed to improve the technical quality of template based code

generators, more specific, to improve the guarantees of the correctness of the output code

and a formal argumentation for the necessary computational power of a template metalan-

guage. In the code generation parlance, the metalanguage is the language in which the code

generator is written.

1.1 Safe Code Generation

This book concerns improving the reliability of template based code generators and pro-

viding better support during the development of these code generators. In order to classify

the reliability of code generators, three classes of safe code generation are defined:

(1) no safety;

(2) syntax-safety;

(3) type safety.

The first safety class represents the code generators providing no guarantees of the correct-

ness of the output at all. Code generators without a notion of the structure of the output code

b.j.arnoldus@repleo.nl



Introduction 3

handle the output code as a sequence of characters. Most code generators, like Xpand1, be-

long to this class. Beside the negative influence on testing and debugging code generators,

this class of code generators comes with security flaws. An example of a security flaw is

HTML injection in web applications. HTML injection is a vulnerability allowing an at-

tacker to inject browser-executable content into a dynamic generated web page. The code

generator cannot distinguish trusted code from malicious code since it considers the output

only as a sequence of characters.

The second safety class represents the code generators guaranteeing that the output code

is at least syntactical correct, i.e. the code generator is syntax-safe. A code generator is

syntax-safe when for every input it is guaranteed that the generated code is a valid sentence

of the desired output language. Syntax-safety eliminates parse errors in tools processing

the output code and helps detecting of syntax related errors in an earlier stage of in the de-

velopment process. Beside the development benefits, syntax-safety can be used to increase

the protection against injection attacks.

The third safety class represents the code generators guaranteeing that the generated code

is also static semantically correct. Static semantics are requirements for the code, which

cannot be detected by only parsing it, such as checks for double declared variables and type

errors. This class of safety guarantees that the generated code always compiles.

The next sections will show a number of approaches for implementing code generators

and discuss the safety level they provide. The code generators discussed in this book are

limited to static code generators. Static code generators write the generated code to disk,

or another representation of a file, before it is processed in a next stage. The opposite

case is run-time code generation, where the generated code is executed immediately. Also,

internally generated code, such as inline function expansion or template instantiation in a

compiler, is considered as run-time code generation. The code generators are divided in

two categories: homogeneous systems and heterogeneous systems. Homogeneous systems

are the systems where the metacode and the object code are sentences of the same language.

In case of a heterogeneous system, the metacode and object code can be expressed using

different languages [Sheard (2001)].

1http://wiki.eclipse.org/Xpand (accessed on January 23, 2012)
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4 Code Generation with Templates

1 fun power n = ( fn x => i f n=0
t h e n < 1 >

3 e l s e < ˜ z ∗ ˜ ( power ( n−1) x ) >)

5 map ( run < fn z => ˜ ( power 3 < z >) >) [ 2 , 4 ]

Fig. 1.2 MetaML example.

1.2 Homogeneous Code Generators

Homogeneous is the collective term for all metaprogramming approaches where the meta-

language and object language are the same. These systems have numerous advantages over

heterogeneous systems [Sheard (2001)]:

• Homogeneous systems can be multi-level, where an object-program can be a metapro-

gram that manipulates second-level object-programs.

• A single type system can describe the types of both the metalanguage and the object-

language in a homogeneous meta-system.

• Homogeneous meta-systems can support reflection, using an operator, “run” or “eval”,

which translates representations of programs. This enables run-time code generation.

An example of a homogeneous metaprogramming system for staged programming is

MetaML [Taha and Sheard (2000)]. ML is a general-purpose functional programming

language. MetaML is a homogeneous metaprogramming approach using ML both as ob-

ject language and metalanguage. The language is designed to enable staged programming.

Staged programming, also called partial evaluation, is a technique giving control over the

order of evaluation. This technique allows specializing a generic function at compile time

and using the specialized version at run-time. Specifying a precise execution order allows

the programmer to control time and space resources. The compiler does not choose whether

a statement is executed during run-time or compile time, but this is an explicit decision of

the programmer. For example a recursive function can be unfolded during compile time,

so that the run-time memory usage and execution time can be predicted.

Figure 1.2 shows a staged power function defined in MetaML. The result of the map

is [8,64]. In normal execution without staging, the power function is executed for

each value of the list. Since the power function is only used as the cubic function,

in a non-staged execution every time the same recursion is executed. By separat-

ing this calculation in two stages, the calculation of the cubic function can be done

b.j.arnoldus@repleo.nl



Introduction 5

once instead of every time the power function is called. As shown in the example,

first the recursion is expanded via the run instruction, resulting in the cubic function

map( fn z => z * z * z * 1 ) [2,4]. In the second stage the map function is eval-

uated.

Another aspect of staged programming is that programs are complete compilation units

and that the program is executable without staging annotations. This allows the possibility

of strong typing and guarantees the syntactical correctness of the expanded code. In case

of MetaML the parser of ML is used, with added grammar rules for the stage annotations

and the ML type checker is reused by adding additional scope rules and bind rules for the

variables in the different stages.

From here, a more liberal definition of a homogeneous system is used; a homogeneous sys-

tem is a system where all the components are specifically designed to work with each other,

whereas in heterogeneous systems at least one of the components is largely, or completely,

ignorant of the existence of the other parts of the system [Tratt (2008)]. Using this new

definition the following systems can also be considered as homogeneous systems: C++

templates [Vandevoorde and Josuttis (2003)], Template Haskell [Sheard and Peyton Jones

(2002)] and Java Generics [Bracha (2004)]. As these homogeneous systems have a lot in

common, we restrict ourselves to the discussion of C++ templates.

C++ templates are a C++ language feature that allows defining functions and classes based

on generic types. These generic functions or classes can work on different data types with-

out being rewritten. This is especially useful, when functionality depends on the underlying

structure and not on the kind of data it operates on. Examples are operations for stacks,

lists, queues and sorting algorithms. As an unintended feature, C++ templates also support

staged programming [Veldhuizen (1999)].

An example of type parameterization via C++ templates is shown in Figure 1.3. This

example shows the definition of a generic comparison template GetMin. The main function

invokes this template in the body, where the template is parameterized with the desired type

via the <type> syntax.

Although homogeneous code generators have certain advantages over heterogeneous code

generator approaches, it is not always possible to use them. The benefits only apply when

code for the same language must be generated, in that case full support for syntax checking

and type checking is offered by the compiler. In a heterogeneous situation, where code for

b.j.arnoldus@repleo.nl



6 Code Generation with Templates

1 # i n c l u d e <i o s t r e a m>

3 t e m p l a t e <typename T>
T GetMin ( T x , T y )

5 {
i f ( x < y ) r e t u r n x ;

7 r e t u r n y ;
}

9
i n t main ( ) {

11 i n t a =2 , b =7;
long c =20 , d =4;

13 s t d : : c o u t << GetMin<i n t >(a , b ) << s t d : : e n d l ;
s t d : : c o u t << GetMin<long >(c , d ) << s t d : : e n d l ;

15 r e t u r n 0 ;
}

Fig. 1.3 C++ template example.

another language must be generated, the internal code expander of the compiler cannot be

used. As a result the safety offered in the homogeneous situation is lost.

1.3 Heterogeneous Code Generators

Heterogeneous code generators are the set of code generators where the metalanguage and

object language are different. These systems are not limited by a particular output language,

as a result, it is possible to implement any code generator in a heterogeneous context [Tratt

(2008)].

A heterogeneous code generator can be implemented in different ways [Völter (2003)].

Abstract syntax tree based, print statement based, term rewriting and text-templates are

commonly used approaches. These approaches will be discussed in the coming sections.

1.3.1 Abstract Syntax Trees

A technique to generate code for an arbitrary target programming language is to instantiate

an abstract syntax tree (see Section 2.5 for a formal definition) representation of the output

code. The code generator instantiates a tree representation of the output code. This tree is

transformed to concrete code via a so-called unparser.

The use of a tree ensures syntactical correctness of the output code, when the tree is based

on a datatype representing the structure of the target (programming) language. It is a re-

quirement that the programming language of the code generator is strongly typed in order
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to ensure that the tree is instantiated in the correct way. The syntactical correctness of the

output code depends on the level of detail of the used abstract syntax tree and the correct-

ness of the unparser. Unparsing is the conversion of abstract syntax tree to concrete syntax.

An abstract data type, or API, of the target language is required before one can write

an abstract syntax tree based generator. This API can be defined manually, as done in

Haskell/DB [Leijen and Meijer (1999)], or an API is off-the-shelf available, like Jener-

ator for Java [Völter and Gärtner (2001)], or an API can be generated from a grammar,

like ApiGen [van den Brand et al. (2005)]. A Jenerator example is shown in Figure 1.4.

This listing shows how the tree is constructed via instantiating types such as CClass and

CMethod. These types represent nodes in the tree. The hierarchical structure of the tree is

visible by the order of calls in the example. First a method node is instantiated and then a

class. The result of the code generator is shown in Figure 1.5. A Hello World program is

generated.

1.3.2 Print Statements

Print statement based generators instantiate code by printing the strings to a file or stream.

It is possible, just as with abstract syntax trees, to generate code for another target language

than the language of the generator. The object code specified in the generator is concrete

and therefore human readable. The print statement approach can be instantly implemented

in any programming language that provides print facilities. It does not depend on external

libraries or tools, such as an unparser. A drawback of this approach is that no guarantees

can be given with respect to the correctness of the output.

Examples of generators based on the print statements are ApiGen [van den Brand et al.

(2005)] and NunniFSMGen2. Figure 1.6 shows a part of ApiGen.

1.3.3 Term Rewriting

Term rewriting is a branch of computer science with its foundations in equational

logic [Baader and Nipkow (1998)]. It differs from equational logic, since rules are only

allowed to replace the left-hand side by the right-hand side and not vice versa. Let t1 and t2
be a term, then a rewrite rule is defined as t1 → t2, where a term matching t1 is replaced by

an instantiation of t2. t2 can again contain patterns which match on left-hand side of other

rules in order to allow further rewriting.
2http://sourceforge.net/projects/nunnifsmgen/ (accessed on December 18, 2011)
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8 Code Generation with Templates

package de . mathema . j e n e r a t o r . p a p e r ;
2 / / i m p o r t s . . .

p u b l i c c l a s s H e l l o J e n e r a t o r {
4 p u b l i c H e l l o J e n e r a t o r ( ) {

6 CClass c r e a t e d C l a s s = new CClass (
” de . mathema . j e n e r a t o r . p a p e r ” , ” Hel loWor ld ” ) ;

8
CMethod mainMethod = new CMethod ( C V i s i b i l i t y . PUBLIC ,

10 CType . VOID , ” main ” ) ;
mainMethod . a d d P a r a m e t e r ( new CParamete r (

12 CType . u s e r ( ” S t r i n g [ ] ” ) , ” a r g s ” ) ) ;
mainMethod . addToBody ( new C l a s s I n s t a n t i a t i o n (

14 c r e a t e d C l a s s . getName ( ) , ” app ” , t r u e ) ) ;

16 C C o n s t r u c t o r cons = new C C o n s t r u c t o r (
C V i s i b i l i t y . PUBLIC ) ;

18 cons . addToBody ( new CCode (
” System . o u t . p r i n t l n (\” H e l l o World ! \ ” ) ; ” ) ) ;

20

22 c r e a t e d C l a s s . a d d C o n s t r u c t o r ( cons ) ;
c r e a t e d C l a s s . addMethod ( mainMethod ) ;

24
new CodeGenera to r ( ) . c r e a t e C o d e ( c r e a t e d C l a s s ) ;

26 }
/ / main method f o l l o w i n g h e r e

28 }

Fig. 1.4 Jenerator code generator example [Völter and Gärtner (2001)].

package de . mathema . j e n e r a t o r . p a p e r ;
2 p u b l i c c l a s s Hel loWor ld{

p u b l i c Hel loWor ld ( ){
4 System . o u t . p r i n t l n ( ” H e l l o World ” ) ;

}
6 p u b l i c vo id main ( S t r i n g [ ] a r g s ){

new Hel loWorld ( ) ;
8 }

}

Fig. 1.5 Jenerator output example [Völter and Gärtner (2001)].

Term rewriting allows to define the projection of input data to source code declaratively

by a set of equations, where the left-hand side matches on the input data and the right-

hand side constructs the output source code. The evaluation of rewrite rules enables gen-

eration of code in a natural way. This property makes term rewriting a suited solution
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1 p r i v a t e v o id g e n A b s t r a c t T y p e C l a s s ( ) {
p r i n t l n ( ” a b s t r a c t p u b l i c c l a s s ” + getClassName ( )

3 + ” e x t e n d s a t e rm . pu re . ATermApplImpl { ” ) ;
g e n C l a s s V a r i a b l e s ( ) ;

5 g e n C o n s t r u c t o r ( ) ;
genToTermMethod ( ) ;

7 genToSt r ingMethod ( ) ;
genSetTermMethod ( ) ;

9 genGetFac to ryMethod ( ) ;
g e n D e f a u l t T y p e P r e d i c a t e s ( ) ;

11
i f ( v i s i t a b l e ) {

13 genAccept ( ) ;
}

15 p r i n t l n ( ” } ” ) ;
}

17
p r i v a t e vo id g e n D e f a u l t T y p e P r e d i c a t e s ( ) {

19 I t e r a t o r <Type> t y p e s = a d t . t y p e I t e r a t o r ( ) ;
w h i l e ( t y p e s . hasNext ( ) ) {

21 Type t y p e = t y p e s . n e x t ( ) ;
g e n D e f a u l t T y p e P r e d i c a t e ( t y p e ) ;

23 }
}

25
p r i v a t e vo id g e n D e f a u l t T y p e P r e d i c a t e ( Type t y p e ) {

27 p r i n t l n ( ” p u b l i c b o o l e a n i s S o r t ” +
TypeGene ra to r . c lassName ( t y p e ) + ” ( ) { ” ) ;

29 p r i n t l n ( ” r e t u r n f a l s e ; ” ) ;
p r i n t l n ( ” } ” ) ;

31 p r i n t l n ( ) ;
}

Fig. 1.6 Print statement based generator example (code snippet from Api-
Gen [van den Brand et al. (2005)]).

for generating recursive code, like nested conditionals and loops. Term rewriting offers

higher level of abstraction over the implementation of a code generator in an impera-

tive language. Despite this, rewrite rules are necessary to process the structure of the

input data. Term rewrite systems come in different flavors, such as processing terms in

ELAN [Borovanský et al. (1996)] and Stratego [Visser (2001)], or such as rewriting con-

crete syntax in ASF+SDF [Bergstra et al. (1989)].

Although term rewriting offers advantages, its learning curve is perceived as steep [Kang

and Aagaard (2007)]. This experience is amplified in case the terms are based on an abstract

syntax tree instead of concrete syntax. Beside that, one of the issues of term rewrite systems

is the temptation to decompose the object code in almost atomic elements. Understanding
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10 Code Generation with Templates

E n t i t y ( ” P e r so n ” ,
2 [ P r o p e r t y ( ” f u l l n a m e ” , S i m p l e S o r t ( ” S t r i n g ” ) ) ,

. . .
4 P r o p e r t y ( ” homepage ” , S i m p l e S o r t ( ” S t r i n g ” ) )

]
6 )

Fig. 1.7 Data structure containing a Person entity.

the resulting code is hard when all parts of the code are scattered over the rewrite rules.

This is also concluded in [Sturm et al. (2002)], while investigating XSLT stylesheets [Clark

(1999)] for code generation.

Two term rewrite approaches will be discussed. One applied to terms based on abstract

syntax trees, i.e. Stratego, and one using concrete syntax, i.e. ASF+SDF.

1.3.3.1 Stratego

Stratego is a language based on conditional term rewriting. The form of the rewrite rules

is l : t1 -> t2 where s. The l is the name of the equation, t1 and t2 are terms, and s

is an optional conditional. Normally the rewrite rules are executed via a fixed strategy.

The Stratego system provides increased flexibility by programmable rewriting strategies,

allowing control over the application of the rewrite rules.

Before starting to write the transformation one should first define the data types of the input

and output. An example is borrowed from [Visser (2008)]. The input data consists of a set

of entities. An entity can contain zero or more properties, which have a name and a type.

Figure 1.7 shows a person entity definition.

This person entity can be transformed to a Java class via a rewrite rule. Since Stratego

is based on terms, the right-hand side of the rule is an abstract datatype representing the

hierarchical structure of the output code. This code must be unparsed to get a concrete

syntax representation. An example of a Stratego rewrite rule that matches the data structure

of Figure 1.7 is given in Figure 1.8.

The rewrite rule matches on the Entity term on the left-hand side and for each entity it

instantiates a Java class. The variable x is used to parameterize the class with the name of

the given entity. In case of the example person entity, x will get the value Person. The

result of the equation is a tree, which is unparsed and shown in Figure 1.9. The properties

of the Entity are ignored by this example rewrite rule and as a result not existing in the

output listing. The example shows the use of Stratego for implementing a code generator.
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e n t i t y −to−c l a s s :
2 E n t i t y ( x , p rop ∗ ) −>

ClassDec (
4 ClassDecHead (

[ MarkerAnno ( TypeName ( Id ( ” E n t i t y ” ) ) ) , P u b l i c ( ) ]
6 , Id ( x )

, None ( ) , None ( ) , None ( ) ) ,
8 ClassBody (

[ Cons t rDec (
10 ConstrDecHead ( [ P u b l i c ( ) ] , None ( ) , Id ( x ) , [ ] , None ( ) ) ,

Const rBody ( None ( ) , [ ] ) )
12 ] )

)

Fig. 1.8 Stratego rewrite rule to create a class based on an entity definition.

1 @Enti ty
p u b l i c c l a s s P e r so n {

3 p u b l i c P e r so n ( ) { }
}

Fig. 1.9 Result code of the rewrite
rule.

e n t i t y −to−c l a s s :
2 E n t i t y ( x C l a s s , p rop ∗ ) −>

| [
4 @Enti ty

p u b l i c c l a s s x C l a s s {
6 p u b l i c x C l a s s ( ) { }

}
8 ] |

Fig. 1.10 Rewrite rule using concrete
syntax.

Although Stratego is based on abstract syntax trees, it does not offer syntax-safety, as every

(sub) tree is casted to the generic type Term.

Beside the use abstract syntax trees, Stratego offers a mechanism to use concrete syntax

in the rewrite rules [Visser (2002)]. The previous defined rule can be implemented using

concrete syntax as shown in Figure 1.10. Note, the identifier x_Class is automatically

recognized by the Stratego parser as a metavariable.

1.3.3.2 ASF+SDF

ASF+SDF is a concrete syntax based rewrite system [Bergstra et al. (1989)]. It ensures that

the output code must conform to a predefined grammar and enforces syntax correctness of

the generated code.

ASF+SDF consists of two formalisms. The first is SDF, an acronym for Syntax Definition

Formalism, which is a formalism to specify the syntaxes of (programming) languages and

to define the function signatures for ASF. Chapter 2 discusses SDF in detail. The Algebraic
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12 Code Generation with Templates

Specification Formalism, ASF, is a rewriting formalism. An ASF specification is a collec-

tion of equations. The equations have a left-hand side that matches on patterns defined in

SDF and a right-hand side specifying the result pattern, also defined in SDF. The form of

these equations is s = t, where s and t are concrete syntax terms. Furthermore ASF supports

conditional equations with a set of conditions, which should succeed before the equation is

reduced. The form of conditional equations is s1 = t1 ,..., sn = tn ===> s = t, where all

variants of s and t are concrete syntax terms. During interpretation of the conditional equa-

tion, first the equations before the arrow sign are evaluated and if all succeed, the equation

after the arrow sign is evaluated.

Figure 1.11 shows the Stratego example expressed in ASF. The example defines the equa-

tion for the function generate: Term -> Java. The equation makes use of a conditional

rewrite rule. First, consider the part below the implication arrow. Its left-hand side is the

generate function and this function includes a match pattern for the input term. The match

pattern also binds variables, recognizable by the $ prefix. These variables are defined in the

accompanying SDF grammar and the variables are defined for specific syntactical types.

The right-hand side specifies the output Java code. The Java code contains a variable $id,

which is not bound in the left-hand side pattern. This variable gets its value from the equa-

tion before the implication arrow. This equation assigns a value to $id by casting the value

of the $class via the function str_to_id. ASF requires that the variables are parsed with

the correct syntactical type. $class has the syntactical type IdCon, while the variable $id

expects a Java identifier. The cast function maps the $class variable to the syntactical

type of $id. This casting is specified before the implication arrow, in case the casting is

not successful; the equation will not be applied.

The strict syntactical typing of the variables in ASF results in a syntactical correct mapping

from the left-hand side to the right-hand side. ASF+SDF guarantees that the result is a

string belonging to the language of the right-hand side type. This mechanism has inspired

the template evaluator guaranteeing syntacticall correct output code, which is discussed in

Chapter 6.

1.3.4 Text-Templates

A text-template system is the last approach to implement code generators we discuss. This

approach is known from its use for instantiating HTML in web applications [Conallen

(1999)]. As a result of the popularity of templates in web applications, numerous template

evaluators are designed for instantiating HTML. Besides generating HTML, text-templates
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[ e n t i t y −to−c l a s s ]
2 $ i d := s t r t o i d ( $ c l a s s )

====>
4 g e n e r a t e ( E n t i t y ( $ c l a s s , $p r op s ) ) =

@Enti ty
6 p u b l i c c l a s s $ i d {

p u b l i c $ i d ( ) { }
8 }

Fig. 1.11 ASF example.

Input data

Template

Template

Evaluator
Generated code

Fig. 1.12 Template based generator.

can be used for generating all kinds of unstructured text, like e-mails or code. Figure 1.12

shows the four artifacts involved in a text-template based generator. These artifacts are

input data, a template, template evaluator and generated code.

Since the literature does not provide a formal definition of a template an informal opera-

tional definition provided by Parr [Parr (2004)] is given:

“A template is an output document with embedded actions which are evaluated when ren-
dering the template.”

Following this definition a template is a text document that can contain placeholders. A

placeholder is a (syntactical) entity, indicating a missing piece of text. It contains some

action, or expression, declaring how to obtain a piece of text to replace it. More formally,

a template is a (text|placeholder)+ pattern, i.e. an arbitrary non-empty sequence of text

fragments and placeholders. The text is the fixed part of the template and is one-to-one

copied to the output document. The placeholder represents a non-complete part of the text.

In case of templates, the placeholders are the metacode, which are sentences of a metalan-

guage. Informally, this metalanguage automatically originates at the moment placeholders
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14 Code Generation with Templates

are introduced in a piece of text or code. This is not only applicable for computer languages,

but also happens in natural languages. For example, when one writes a generic agreement

or letter where the names are replaced by a sequence of dots (. . .). These dots are the

placeholders in the document, and can be considered as sentences of a metalanguage. Con-

sidering a template processed automatically, the metalanguage must have formal semantics

and should contain explicit instructions.

Automatic processing of templates is performed by a so-called template evaluator. This

is an application that interprets a template in order to generate text. It searches for place-

holders, executes the specified action and replaces the placeholders to complete the output

text.

The combination of template and template evaluator constitutes a code generator. The

template contains the application specific part of the code generator, while the template

evaluator is the generic part of the code generator. The generic part of the code generator

is amongst others responsible for handling the output text, input data processing and other

administrative tasks such as directory creation and file creation.

The understandability of the code generator improves as boilerplate code is separated from

the output code patterns. Considering the abstract syntax tree approach or the print state-

ments approach, generator code and output code fragments are mixed in the same code

context. The text-template approach separates these two artifacts of a generator. Further-

more, the code patterns in a text-template are written in concrete syntax.

Text-templates can be used to generate code for every target language. It is a common

pattern for writing web page generators [Conallen (1999)], but it is also used in code gen-

erator frameworks such as model-driven engineering tools like openArchitectureWare3.

Examples of text-template evaluators are Apache Velocity4, StringTemplate [Parr (2004)],

ERb [Herrington (2003)], Java Server Pages5, FreeMarker6 and Smarty7.

Figure 1.13 shows a template for the Apache Velocity template evaluator. The $ signs are

used for Java object references to obtain values. Instructions for the template evaluator are

prefixed by a #. The loop construction #foreach, is used. This construct expresses a loop

over a list of objects and the body of the loop is evaluated every iteration, where the context

is set to the current processed element of the list. The #set directive is used for setting a

value. In this case it is used to upper case the first character of the identifier of the field

3http://www.openarchitectureware.org (accessed on December 18, 2011)
4http://velocity.apache.org (accessed on December 18, 2011)
5http://java.sun.com/products/jsp/ (accessed on December 18, 2011)
6http://freemarker.org (accessed on December 18, 2011)
7http://www.smarty.net (accessed on December 18, 2011)
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/∗
2 ∗ C r e a t e d on $newDate

∗ g e n e r a t e d by a FUUT−j e a p p l i c a t i o n u s i n g
4 ∗ V e l o c i t y t e m p l a t e s

∗ /
6 package $package ;

p u b l i c c l a s s $ c l a s s . Name {
8 # f o r e a c h ( $ a t t i n $ c l a s s . A t t r i b u t e s )

p r o t e c t e d $ a t t . Type ${ a t t . Name} ;
10 # end

12 # f o r e a c h ( $ a t t i n $ c l a s s . A t t r i b u t e s )
/∗∗

14 ∗ @return R e t u r n s t h e $ a t t . Name
∗ /

16 # s e t ( $uName = ” ${ f t . c a p F i r s t ( $ a t t . Name )} ” )
p u b l i c S t r i n g g e t $ {uName } ( ) {

18 r e t u r n $ a t t . Name ;
}

20
/∗∗

22 ∗ @param $ a t t . Name The $ a t t . Name t o s e t .
∗ /

24 p u b l i c vo id s e t $ {uName} ( S t r i n g ${ a t t . Name} ) {
t h i s . ${ a t t . Name} = $ a t t . Name ;

26 }
# end

28 }

Fig. 1.13 Example of an Apache Velocity template [van Emde Boas
(2004)].

name. The upper case first character is a requirement from the Java coding standards.

1.4 Conclusions

Table 1.1 provides an overview of the advantages and disadvantages of the discussed code

generator implementation approaches.

A homogeneous system is superb in terms of syntax-safety and type safety, because it is a

language feature. This is also the drawback for homogeneous systems. It is only possible to

generate code for the language itself. Further, the homogeneous approach can only be used

when the output language can express computations, and thus can act as both metalanguage

and object language. This is not always the case, for instance HTML cannot be used as

metalanguage, since HTML cannot express behavior.

In case it is required to generate code for another language than the metalanguage, one can
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Table 1.1 Advantages and disadvantages code generator implementation approaches.

Technique Advantages Disadvantages

Homogeneous No external tools Mono lingual

Type safety

Abstract Syntax Tree Syntax-safety Output code not concrete

Abstract Data Type

required

Unparser required

Print Output code concrete No safety

statements

Term rewriting Syntax-safety Complex technique

Text-templates Output code concrete No safety

Generic generator code

separated

use abstract syntax trees, print statements, term rewriting systems, or text-templates. The

use of abstract syntax trees enables syntax-safe code generation. However, constructing

an abstract syntax tree involves additional complexity for writing and maintaining a code

generator. The complexity is a result of the not concrete object code inside the generator.

It is hard to read the object code, since it is encapsulated in a data structure representing

the abstract syntax. A detailed knowledge of the object language grammar structure is

necessary. Finally having an abstract data type is not sufficient; an unparser must also be

available to transform the instantiated syntax tree into text.

The print statements approach solves the problem of not concrete object code. Print state-

ments, or semantically equivalent, are available in all languages without the necessity of

external libraries. The drawback of a print statements based generator is its simplicity.

String constants contain the fragments of output code. Syntax errors are not detected by

the generator or by the compiler of the metalanguage.

Term rewriting allows defining a code generator in a declarative manner by a set of equa-

tions, where the left-hand side matches on the input data and the right-hand side constructs

the output source code. By nature, term rewriting supports syntactical safe code generation

in case the terms are sufficient typed. However, term rewriting based code generators do

not remove the entangling between the object code and the code processing the input data

and file manipulation.
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The text-template approach offers abstraction of most of the generic generator code. The

generator related code is captured in the template evaluator. Only small chunks of metacode

in the template are necessary to instruct the template evaluator. This result in a similar

look of the template and the output code it instantiates. The drawback of text-templates is

already in its name. The evaluator of text-templates does not consider the correctness of

the object code and handles it as a sequence of characters and thus no guarantees can be

given that the output code is syntactically correct.

1.5 Improving the Quality of Code Generators

The central theme of this book is to improve the technical quality of template based code

generators. Templates are a widely used implementation approach for code generators,

such as for generating HTML in web applications. As a result a lot of template evaluator

implementations exist. However, as earlier discussed, text-templates do not offer safety

and they lack of good support for all its language artifacts during development.

Theories and concepts are presented and discussed to improve the technical quality of tem-

plate based code generators. This technical quality includes improving the guarantees of

the correctness of the output code and includes a formal argumentation for the necessary

computational power of a template metalanguage. Techniques are discussed to guarantee

that the output is syntactically correct. This improves the ability to find errors as early as

possible and not only when the generated code is compiled or interpreted. Finding errors

in an earlier stage also reduces the chance that generated code or a code generator shipped

to a client contains errors. Beside that, the presented solution also offers increased safety

of applications generating code during run-time.

This book is for software professionals, researchers and students who have a basic knowl-

edge level in software engineering. We anticipate three classes of reader:

• Software engineers designing template engines or web designers using templates, who

want to understand the theoretical foundations of templates or wish to read the practical

applicability of templates. They should read Chapter 4 and Chapter 7.

• Researchers who wish to understand the theoretical properties of templates. They

should read Chapter 3, Chapter 5 and Chapter 6.

• Students of computer science who wants to learn about code generation and want to

learn about the different roles the different languages have in the context of template-

based code generation. They should read Chapter 3 to Chapter 6.
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This book consists of an introduction followed by six chapters and a conclusion. Each

of these chapters answers discuss a sub topic in the context of the central theme and they

are arranged in order of dependency. Chapter 2 presents a literature study on the topic of

formal languages. It provides the basic definitions and notations used in this book.

Chapter 3 discusses the relation between different grammar classes in order to define the

requirements that a metalanguage for code generators should fulfill. These requirements

for the metalanguage are based on formal languages theory. The relations between concrete

syntax, abstract syntax, parser, unparser and their underlying grammars are discussed.

Using the requirements specified in Chapter 3 a metalanguage for templates is defined

in Chapter 4. This metalanguage is based on existing theory of programming languages.

The chapter finishes with comparing the metalanguage with a couple of different related

template evaluators.

Chapter 5 discusses a method to check the syntax of the object language and metalanguage

in a template simultaneously. The relation between the grammars of the object language

and the metalanguage is presented. It is used to specify a template grammar containing

rules for both object language as well as metalanguage. Having a grammar with rules for

both languages enables checking of both languages simultaneously by a parser. The pre-

sented approach is object language parametric and every object language can be extended

with a metalanguage as long the object language comes with a context-free grammar.

Checking only the syntax of the template is not sufficient to guarantee that the output of

the template evaluator produces code without syntax errors. Chapter 6 shows an approach

to guarantee that a template always generates code without syntax errors. The ideas of an

unparser-complete metalanguage and syntax-safety are implemented in a template evalua-

tor called Repleo8.

Finally, the case studies are discussed to show the applicability of (syntax-safe) templates.

Chapter 7 shows the use of Repleo used for code generation in different application do-

mains; the generation of data structures and state machines. Furthermore protection against

(HTML) injection attacks in web applications is presented.

8http://www.repleo.nl
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Chapter 2

Preliminaries

This chapter provides basic notations, definitions and properties needed throughout this

book. Whenever possible the notations and definitions are used as they appear in the liter-

ature [Comon et al. (2008); Engelfriet (1974); Hopcroft et al. (2001); Aho et al. (1986)].

This chapter can be skipped and referred to when necessary.

2.1 Basic Definitions and Notations

The formal language theory is used to study templates and describe their syntax. This

section provides definition for common concepts of formal languages. The definitions are

based on automata and language theory:

• A symbol is a syntactic entity without any meaning.

• An alphabet is a finite, non-empty set of symbols.

• The rank (or arity) of a symbol is the number of children.

• A ranked alphabet is a pair of an alphabet and ranking functions, where the rank func-

tion maps a symbol in the alphabet to a single rank.

• A string is a finite sequence of symbols from the given alphabet.

• A language is the set of all strings belonging to an alphabet, including the empty string.

• A terminal symbol is a symbol from which sentences are formed and it occurs literally

in a sentence, i.e. terminal symbols are elements of the alphabet.

• A nonterminal symbol is a variable representing a sequence of symbols and it can

replace a string of terminal symbols or a string existing of a combination of terminal

and nonterminal symbols.

Next to strings, the concept of tree is used throughout the book. The trees considered here

are finite (finite number of nodes and branches), directed (top-down), rooted (there is one

19
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20 Code Generation with Templates

node, the root, with no branches entering it), ordered (the children of a node are ordered left

to right) and labeled (the nodes are labeled with symbols from a given alphabet) [Engelfriet

(1974)]. The following terminology is be used:

• A leaf is a node with rank 0.

• The top of a tree is its root.

• A path through a tree is a sequence of nodes connected by branches (“leading down-

wards”).

• A subtree of a tree is a tree determined by a node together with all (the subtrees of) its

children.

The following list presents the naming convention and basic definitions used throughout

the book.

• i, j and r are used for integer variables.

• Σ is used to denote an alphabet. For example, the binary alphabet Σ = {0,1}, and the

set of all lower-case letters Σ = {a,b, . . . ,z}.

• Σ ∗ denotes all strings over an alphabet Σ .

• σ and c for an alphabet symbol.

• N for nonterminal alphabets.

• n for a nonterminal symbol of N.

• y for sequences of alphabet symbols combined with nonterminal symbols (i.e. strings,

elements of (N∪Σ)∗).

• z for an alphabet symbol or a nonterminal symbol (z ∈ (N∪Σ)).

• ε is used for the empty string or null value.

• L for languages. A language contains all sentences defined by Σ ∗.
• s for a sentence of a language L defined by Σ ∗.
• r denotes the rank of a symbol and r ∈ N0. It is defined by the ranking function rσ =

rank(σ) where σ ∈ Σ . Each symbol in a ranked alphabet (see Definition 2.1.1) has a

unique rank.

• Σr for the set of symbols of rank r.

• Tr(Σ) denotes the set of trees over a ranked alphabet Σ , i.e. Σ including a set of ranking

functions over Σ .

• t for a tree (see Definition 2.1.2).

• a for an alphabet symbol with rank 0 (a ∈ Σ0).

• f for an alphabet symbol with rank greater than 0 ( f ∈ Σr,where r > 0).
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• X is a set of symbols called variables, where it is assumed that the sets X and Σ0 are

disjoint.

• x is a variable x ∈ X and is not used for integer values.

• G for grammars.

Definition 2.1.1 (Ranked alphabet). An alphabet Σ is said to be ranked if for each non-

negative integer r a subset Σr of Σ is specified, such that Σr is nonempty for a finite number

of r’s only, and such that Σ =
⋃

r!0
Σr. If σ ∈ Σr, then σ has rank r.

Example 2.1.1 (Ranked alphabet). The alphabet Σ = {a,b,+,−,∗} is converted to a

ranked alphabet by specifying Σ0 = {a,b}, Σ1 = {−} and Σ2 = {+,∗}.

Definition 2.1.2 (Tree). Given a ranked alphabet Σ , the set of trees over Σ , denoted by

Tr(Σ) is the language over the alphabet Σ ∪{[ , ]}, where Σ ∩{[ , ]}= /0, defined inductively

as follows.

(1) If σ ∈ Σ0, then σ ∈ Tr(Σ).

(2) For r ! 1, if σ ∈ Σr and t1, . . . , tr ∈ Tr(Σ), then σ [t1 . . . tr] ∈ Tr(Σ).

Example 2.1.2 (Tree). Consider the ranked alphabet of Example 2.1.1. Then +[∗[a− [b]]a]

is a tree of this alphabet. This tree can be visualized as:

+[∗[a− [b]]a] =

+

∗

a −

b

a

Which on its turn represents the concrete expression (a∗ (−b))+a.

Definition 2.1.3 (Linear tree). A tree may contain variables, i.e. placeholders for subtrees.

A tree t ∈ Tr(Σ ∪X) is linear when each variable is at most used once in t.

Definition 2.1.4 (Substitution). A substitution (respectively a ground substitution) m is

a mapping from X into Tr(Σ ∪X) (respectively into Tr(Σ)) where there are only finitely

many variables not mapped to themselves. The domain of a substitution m is the subset of
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variables x ∈ X such that m(x) ̸= x. The substitution {x1 ← t1, . . . ,xr ← tr} maps xi ∈ X on

ti ∈ Tr(Σ ∪X), for every index 1≤ i≤ r. A substitution is ground when all terms t1, . . . , tr
are ground terms, that is, when the terms do not contain variables.

Substitutions can be extended to Tr(Σ ∪X) in such a way that:

∀ f ∈ Σr,∀t1, . . . , tr ∈ Tr(Σ ∪X) m( f (t1, . . . , tr)) = f (m(t1), . . . ,m(tr)).

Example 2.1.3 (Substitution). Let Σ = { f ( , , ),g( , ),a,b} and X = {x1,x2}. Consider

the term t = f (x1,x1,x2). Consider the ground substitution m = {x1 ← a,x2 ← g(b,b)}
and the non-ground substitution m′ = {x1 ← x2,x2 ← b}. Then m(t) = t{x1 ← a,x2 ←
g(b,b)}= f (a,a,g(b,b)) and m′(t) = t{x1 ← x2,x2 ← b}= f (x2,x2,b).

Definition 2.1.5 (Tree homomorphism). Let Σ and Σ ′ be two, not necessarily disjoint,

ranked alphabets. For each r > 0 such that Σ contains a symbol of rank r, a set of variables

Xr = {x1, . . . ,xr} disjoint from Σ and Σ ′ is defined.

Let hΣ be a mapping which, with f ∈ Σ of rank r, associates a term t f ∈ Tr(Σ ′,Xr). The

tree homomorphism h : Tr(Σ)→ Tr(Σ ′) is determined by hΣ as follows:

• h(a) = ta ∈ Tr(Σ ′) for each a ∈ Σ of rank 0,

• h( f (t1, . . . , tn)) = t f {x1 ← h(t1), . . . ,xr ← h(tr)}
where t f {x1 ← h(t1), . . . ,xr ← h(tr)} is the result of applying the substitution {x1 ←
h(t1), . . . ,xr ← h(tr)} to the term t f .

hΣ is called a linear tree homomorphism when no t f contains two occurrences of the same

xr. Thus a linear tree homomorphism cannot copy trees.

Example 2.1.4 (Tree homomorphism). Let Σ = {g( , , ),a,b} and Σ ′ = { f ( , ),a,b}.

Consider the tree homomorphism h determined by hΣ defined by: hΣ (g) =

f (x1, f (x2,x3)),hΣ (a) = a,hΣ (b) = b. For instance: If t = g(a,g(b,b,b),a), then h(t) =

f (a, f ( f (b, f (b,b)),a)).

2.2 Context-free Grammars

This book will focus on the generation of sentences of languages aimed to express programs

executed or interpreted by a computer. The rules for constructing valid sentences of these

languages can be specified by context-free grammars. The syntax1 of a language is its valid
1The syntax rules do not specify the meaning of a sentence; as a result a syntactical correct sentence can be

nonsense.
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set of sentences. Compilers or interpreters for most programming languages are based on

LL or LR parsers. LL or LR parsers can handle a subset of the context-free grammars,

which implies that these programming languages are context-free languages. A context-

free language L (G) is specified by a context-free grammar G. A sentence belonging to the

set of sentences specified by a context-free grammar is called a well-formed sentence. The

context-free grammar is defined as follows [Hartmanis (1967)]:

Definition 2.2.1 (Context-free grammar). A context-free grammar (CFG) is a four-tuple

⟨Σ ,N,S,Prods⟩ where

Σ is a finite set of terminal symbols, i.e. the alphabet.

N is a finite set of nonterminal symbols and N∩Σ = /0.

S is the start symbol, or axiom, and S ∈ N.

Prods is a finite set of production rules of the form n → y where n ∈ N and y ∈
(N∪Σ)∗.

Each context-free grammar Gcfg can be transformed into a Chomsky normal form without

changing the language generated by that grammar [Hotz (1980)]. A context-free grammar

of the Chomsky normal form only contains rules of the forms:

(1) n→ ε , where n ∈ N and A is the start symbol;

(2) n→ s, where n ∈ N and s ∈ Σ ∗;
(3) n→ n1n2, where n, n1, n2 ∈ N.

Example 2.2.1 shows a context-free grammar definition for a language based on boolean

algebra.

Example 2.2.1 (Context-free grammar). Let Gbool be a context-free grammar with, Σ =

{ ,\n, ˜,&, |, (, ), true, false}, nonterminals N = {E, T, F, L, C}, start symbol S = E and rules

Prods =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E→ L T, F→ “˜” L F, L→ C L,

E→ E “|” L T, F→ “(” L E “)” L, L→ ε,
T→ F, F→ “true” L, C→ “ ”,

T→ T “&” L F, F→ “false” L, C→ “\n”

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The layout syntax is defined by the production rules for the nonterminal L. We assume that

this layout nonterminal is inserted after every terminal symbol in the grammar and before

the start nonterminal, in the case of the first production rule after nonterminal E [Johnstone

et al. (2011)].
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A context-free grammar defines a set of sentences, i.e. the language L (G), where for each

s ∈ Σ a derivation exists S ∗
==⇒

G
s. If a sentence belongs to L (G), a parse tree can be

constructed using the grammar. This tree is derived by applying the production rules of the

grammar to construct the sentence and it is called the parse tree. Example 2.2.2 shows a

parse tree derived from a sentence of L (Gbool).

Example 2.2.2 (Parse tree). Let s be ~true & false | true, the parse tree of s using

the grammar G is:

dG(s) =

E

E

L

ε

T

T

F

˜ L

ε

F

true L

C L

ε

& L

C L

ε

F

false L

C L

ε

| L

C L

ε

T

F

true L

ε

A parse tree represents the hierarchical structure of the sentence expressed by the produc-

tion rules of its grammar. Normally such parse trees are automatically constructed from a

given sentence when a parser is used based on the grammar. A parser can, for instance, use

algorithms like LL [Aho et al. (1989)] and LR [Knuth (1965)].

The parse tree contains all necessary information to restore the original sentence. Consider

the parse tree of Example 2.2.2, and read the leaves from left to right, the original sentence

is visible. The yield function reconstructs the original string of a parse tree. It traverses

a parse tree in order to compute the original sentence from it by concatenating the leaves

(taking the leaf symbols as letters) from left to right.

Definition 2.2.2 (Yield). The yield function is defined by the following two rules:

• yield(a) = a if a ∈ Σ0;

• yield( f (t1, . . . , tr))= yield(t1)· . . . ·yield(tr) if f ∈Σr and ti ∈Tr(Σ∪N), where · denotes

the string concatenation.
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2.3 Regular Tree Grammars

A regular tree language is a set of trees generated by a regular tree grammar. The definition

of regular tree grammars is:

Definition 2.3.1 (Regular tree grammar). A regular tree grammar (RTG) is a four-tuple

⟨Σ ,N,S,Prods⟩, where:

Σ is a finite set of terminal symbols with rank r ≥ 0.

N is a finite set of nonterminal symbols with rank r = 0 and N∩Σ = /0.

S is a start symbol and S ∈ N.

Prods is a finite set of production rules of the form n → t, where n ∈ N and t ∈
Tr(Σ ∪N).

Example 2.3.1 shows a regular tree grammar (taken from [Cleophas (2008)]).

Example 2.3.1 (Regular tree grammar). Let G be the regular tree grammar with Σ =

{a( , ),b( ),c}, nonterminals N = {E,W}, start symbol E, and rules

Prods = {

E→W,

W→ b(W),

W→ b(a(c,c))

}

The language of this grammar is

L (Grtg) = {b(a(c,c)),b(b(a(c,c))),b(b(b(a(c,c)))), . . .}.

The parse steps of the term b(b(a(c,c))) are E ⇒W ⇒ b(W )⇒ b(b(a(c,c))), where⇒ is

a derivation step.

Regular tree languages have a number of properties [Cleophas (2008)], the one being im-

portant for this book is recognizability of regular tree languages. Recognizable tree lan-

guages are the languages recognized by a finite tree automaton. Regular tree languages are

recognizable by (non)-deterministic bottom up finite tree automata and non-deterministic

top-down tree automata [Comon et al. (2008)]. The set of languages recognizable by deter-

ministic top-down tree automata is limited to the class of path-closed tree languages [Virágh

(1981)], a subset of regular tree languages (see Section 3.3).
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2.4 Relations between CFL and RTL

A number of relations can be defined between context-free languages and regular tree lan-

guages [Cleophas (2008)]. Amongst others, a tree can be represented as a term. These

terms can be parsed using a context-free grammar, since printing a (sub)tree to text does

not depend on the sibling nodes of that (sub)tree. This context-free grammar of the used

term representation is given in Figure 2.4. For example the tree of Example 2.2.1 can be

represented by the term

E(

E(L(ε),

T (T (F(˜,L(ε),F(true,L(C( ),L(ε))))),

&,L(C( ),L(ε)),F(false,L(C( ),L(ε))))),

|,L(C( ),L(ε)),T (F(true,L(ε)))

)

The goal of this book is the formal definition of code generators based on templates. For

this purpose, the relation between regular tree languages and the parse trees of context-

free languages is relevant. The parse function takes a string and a grammar and returns

the parse tree of that string when the string can be produced by that grammar. The way

parse algorithms create a parse tree shows regularity, which suggests that the parse trees

are indeed regular. A proof that the set of parse trees of a context-free grammar is a regular

tree language can be found in [Comon et al. (2008)]. The following definition shows the

derivation of the regular tree grammar L (Gpt) defining the set of parse trees of a context-

free grammar L (Gc f g).

Definition 2.4.1 (Regular tree grammar for parse trees). Let Gc f g = ⟨Σ ,N,S,Prods⟩ be

a context-free grammar. The regular tree grammar Gpt = ⟨Σ ′,N′,S′,Prods′⟩ defining the

parse trees of Gc f g is derived by the following rules:

• The start symbol of both grammars is equal: S = S′,

• The set of nonterminals of both grammars is equal: N = N′,

• The alphabet of Gpt is derived by the following rule: Σ ′ = Σ ∪ {ε}∪ {(n,r) | n ∈
N, ∃n→ y ∈ Prods with r equal to the number of symbols of y}. In parse trees, a sym-

bol can normally have a different number of children, when alternative production rules

have a different pattern length. In tree languages a symbol must have a fixed rank, so
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the symbol (n,r) is introduced for each n ∈ N such that there is a rule n→ y where y

has r symbols.

• The set of productions Prods′ of Gpt is derived by the following rules:

if n→ ε ∈ Prods then n→ (n,0)(ε) ∈ Prods′.

if (n→ n1 . . .nr) ∈ Prods then n→ (n,r)(n1, . . . ,nr) ∈ Prods′.

Example 2.4.1 (Regular tree grammar for parse trees). Since normally in parse trees

a symbol can have different number of children, an updated version of the parse tree dis-

played in Example 2.2.2 is given: dG(s) =

(E, 4)

(E, 2)

(L, 1)

ε

(T, 4)

(T, 1)

(F, 3)

˜ (L, 1)

ε

(F, 2)

true (L, 2)

(C, 1) (L, 1)

ε

& (L, 2)

(C, 1) (L, 1)

ε

(F, 2)

false (L, 2)

(C, 1) (L, 1)

ε

| (L, 2)

(C, 1) (L, 1)

ε

(T, 1)

(F, 2)

true (L, 1)

ε

Using the definition given above, the Gpt defining the language of parse trees of Gbool

can be derived. The result of the derivation is a regular tree grammar Gpt with, Σ =

{ ,\n, ˜,&, |, (, ), true, false}, nonterminals N = {(E,4), (E,2), (T,4), (T,1), (F,5), (F,3),
(F,2), (L,2), (L,1), (C,1)}, start symbol S = E and rules

Prods =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(E,2)→ L T, (F,3)→ “˜” L F, (L,2)→ C L,

(E,4)→ E “|” L T, (F,5)→ “(” L E “)” L, (L,1)→ ε,
(T,1)→ F, (F,2)→ “true” L, (C,1)→ “ ”,

(T,4)→ T “&” L F, (F,2)→ “false” L, (C,1)→ “\n”

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The following statements hold for context-free grammars and regular tree grammars:

• L (Gpt) = parse(L (Gc f g))

• L (Gc f g) = yield(L (Gpt))

Hence, also
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• L (Gc f g) = yield(parse(L (Gc f g)))

• L (Gpt) = parse(yield(L (Gpt)))

Sentences can be mapped to a parse tree and back to the original sentence. This is a result

of the fact that the parse function does not throw away information, but it builds a tree with

the original sentence distributed over its leaves.

2.5 Abstract Syntax Trees

The set of abstract syntax trees of a language is called the abstract syntax and this abstract

syntax is defined by a regular tree grammar. These abstract syntax trees are considered as

the abstract representation of well-formed sentences [Donzeau-Gouge et al. (1984)]. The

abstract syntax representation of a sentence is unique, while the textual representation is

usually cluttered with optional and semantically irrelevant details such as blanks and line

feeds. These optional and semantically irrelevant details are called syntactic sugar.

The abstract syntax tree is a representation of a sentence without superfluous nodes, such

as nodes corresponding to keywords and Chain rules [Koorn (1994)]. A chain rule is a

grammar rule of the form n1 → n2, where both n1 and n2 are nonterminals.

Example 2.5.1 (Abstract syntax tree). An example of an abstract syntax tree of the sen-

tence s given in Example 2.2.2 is:

AST(s) =

Or

And

Not

True

False

True

It can also be represented as a term

AST(s) = Or(And(Not(True),False),True).
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b e g i n d e c l a r e i n p u t : n a t u r a l ,
2 o u t p u t : n a t u r a l ,

r e p n r : n a t u r a l ,
4 r e p : n a t u r a l ;

i n p u t := 1 4 ;
6 o u t p u t := 1 ;

w h i l e i n p u t − 1 do
8 r e p := o u t p u t ;

r e p n r := i n p u t ;
10 w h i l e r e p n r − 1 do

o u t p u t := o u t p u t + r e p ;
12 r e p n r := r e p n r − 1

od ;
14 i n p u t := i n p u t − 1

od
16 end

Fig. 2.1 A PICO program.

2.6 Used Languages and Formalisms

This section discusses the syntax of the formalisms used throughout the book. The lan-

guage PICO is also presented here. PICO is used for illustrating purposes.

2.6.1 The PICO Language

The goal of PICO [Bergstra et al. (1989)] is to have a simple language, large enough to

illustrate the concepts of parsing, type checking and evaluation. Informal, the PICO lan-

guage is the language of while-programs. The main features of PICO are:

• Two types: natural numbers and strings.

• Variables must be declared in a separate section.

• Expressions can be made of constants, variables, addition, subtraction and concatena-

tion.

• Statements: assignment, if-then-else and while-do.

A PICO program consists of declarations followed by statements. Variables must be de-

clared before they can be used in the program. Statements and expressions can be used in

the body of the program. An example PICO program that computes the factorial function

is given in Figure 2.12.
2Example borrowed from http://www.meta-environment.org/doc/books/extraction-transformation/

language-definitions/language-definitions.html (accessed on December 18, 2011)
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2.6.2 Syntax Definition Formalism

Template grammars, as presented in Chapter 5, can easily become ambiguous and dealing

with ambiguities is a primary requirement for parsing templates. The Scannerless General-

ized LR (SGLR) algorithm, and its implementation the SGLR parser [Visser (1997)], can

deal with these ambiguities. Grammars for the SGLR parser are defined using the Syntax

Definition Formalism (SDF) [Heering et al. (1989)], which is the main reason for using

SDF in this book.

In contrast with other parser algorithms, such as LL or LALR, and their used BNF-

like [Backus et al. (1960)] grammar formalisms, SDF supports the complete class of

context-free grammars. This enables the support for modular grammar definitions. Pieces

of grammar can be embedded in modules and imported by other modules. Modules may

have formal symbol parameters, which can be bound by actual symbols using imports.

The syntax of module parameters is: module <ModuleName> [ <Symbol>+ ]. When

the module is imported, all occurences of the formal parameters will be substituted by the

actual parameters The modularity enables combining and reusing of grammars.

The core of an SDF module consists of the elements of the mathematically four-tuple defi-

nition of a context-free grammar as defined in Section 2.2. In SDF nonterminals are called

sorts and declared after the similar keyword sorts. Symbols is the global name for literals,

sorts and character classes and form the elementary building blocks of SDF syntax rules.

Start symbols are declared after the keyword context-free start-symbols. Produc-

tion rules are declared in sections context-free syntax and lexical syntax. The

productions rules contain a syntactical pattern at the left-hand side and a resulting sort at

the right-hand side. This left-hand side pattern is based on a combination of symbols, i.e.

terminals in combination with nonterminals. Symbols can be declared as optional via a

postfix question mark. In the context-free syntax section a LAYOUT sort is automati-

cally injected between every symbol in the left-hand side of a production rule. The LAYOUT

sort is an SDF/SGLR embedded sort for white spaces and line feeds. This mechanism dif-

fers from the earlier presented approach, where the layout nonterminal should be present

explicitly in the production rules. To illustrate SDF, the SDF module shown in Figure 2.2

defines the PICO language.

SDF also supports concise declaration of associative lists. A list is declared by its ele-

ments and a postfix operator * or +, with the respectively meaning of at least zero times

or at least one time. Lists may contain a separator, which are declared via the pattern

{Symbol Literal}*, where Symbol defines the syntax of the elements and Literal de-
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module l a n g u a g e s / p i c o / s y n t a x / P i co
2

i m p o r t s b a s i c / NatCon
4 i m p o r t s b a s i c / S t rCon

i m p o r t s b a s i c / Whi t e space
6

h i d d e n s
8 c o n t e x t−f r e e s t a r t −symbols

PROGRAM
10

e x p o r t s
12 s o r t s PROGRAM DECLS ID−TYPE STATEMENT EXP TYPE PICO−ID

14 c o n t e x t−f r e e s y n t a x
” b e g i n ” DECLS {STATEMENT” ; ” }∗ ” end ”

16 −> PROGRAM { cons ( ” program ”)}
” d e c l a r e ” {ID−TYPE ” , ” }∗ ” ; ”

18 −> DECLS { cons ( ” d e c l s ” )}
PICO−ID ” : ” TYPE −> ID−TYPE { cons ( ” d e c l ” )}

20
PICO−ID ” : = ” EXP −> STATEMENT { cons ( ” a s s i g n m e n t ” )}

22 ” i f ” EXP ” t h e n ” {STATEMENT ” ; ” }∗
” e l s e ” {STATEMENT ” ; ” }∗ ” f i ”

24 −> STATEMENT { cons ( ” i f ” )}
” w h i l e ” EXP ” do ” {STATEMENT ” ; ” }∗ ” od ”

26 −> STATEMENT { cons ( ” w h i l e ” )}

28 PICO−ID −> EXP { cons ( ” i d ” )}
NatCon −> EXP { cons ( ” n a t c o n ” )}

30 StrCon −> EXP { cons ( ” s t r c o n ” )}
EXP ”+” EXP −> EXP { cons ( ” add ” )}

32 EXP ”−” EXP −> EXP { cons ( ” sub ” )}
EXP ” | | ” EXP −> EXP { cons ( ” c o n c a t ” )}

34 ” ( ” EXP ” ) ” −> EXP { cons ( ” b r a c k e t ” )}

36 ” n a t u r a l ” −> TYPE { cons ( ” n a t u r a l ” )}
” s t r i n g ” −> TYPE { cons ( ” s t r i n g ” )}

38
l e x i c a l s y n t a x

40 [ a−z ] [ a−z0−9]∗ −> PICO−ID { cons ( ” p i c o i d ” )}

42 l e x i c a l r e s t r i c t i o n s
PICO−ID −/− [ a−z0−9]

Fig. 2.2 The PICO grammar in SDF.

fines the separator syntax, for example: {STATEMENT ";" }*. This kind of lists are called

separated lists.

The production rules can be annotated with a list of properties between curling brackets at

the right-hand side of the rule. The parser includes these annotations in the parse tree at
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the node produced by the production rule. Tools processing the parse tree can use these

annotations.

For example, an abstract syntax for an SDF grammar can be specified using annotations.

The label of the abstract syntax representation of a production rule is assigned by a so-

called constructor value. This constructor value is used during desugaring to instantiate

the nodes of the abstract syntax tree. The constructor is declared via a cons value. SDF

requires that a constructor is unique for a given sort, and in that way suffices the first

uniqueness requirement of the desugar function of Definition 3.1.1. It does not require that

a constructor is only used for a fixed rank and thus SDF does not satisfy the requirements

to generate a legal regular tree language. Production rules can also annotated with the

keyword reject. The reject annotation specifies that strings specified by the rule is

rejected for that nonterminal. Rejects should only used for nonterminals defining lexical

syntax. The rejects are used to specify the lexical disambiguation rule “prefer keywords”.

Besides these core features of SDF, it supports modularization of grammar definitions. Ev-

ery grammar definition file is declared as a module with a name, which can be imported by

other modules. Modules are imported via the imports keyword followed by the name(s)

of imported modules. Sections of a grammar module can be declared hidden or visible via

the keywords hiddens and exports to prevent unexpected collisions between grammar

modules result in undesired ambiguities. Exported sections are visible in the entire gram-

mar, while hidden sections are only visible in the local grammar module. Although the

namespace of a nonterminal is global, adding a new alternative to a nonterminal, which

is defined in an imported module, does not change the recognized language of imported

module. This is because per module an LR parse table is generated, based on the mod-

ule dependency graph. SDF also provides syntax to define priorities and associativity to

express disambiguation rules in a grammar.

Considering again the SDF module shown in Figure 2.2. The nonterminals and production

rules are declared in the exported section. The start symbol is PROGRAM, which is the root

sort for a PICO program. In the PICO module the start symbol is declared hidden to prevent

automatic propagation to modules importing this grammar. The annotation feature of SDF

is also used in the PICO module to specify the abstract syntax tree. The definition for the

sorts NatCon and StrCon, and a module defining white space (spaces, tabs, and new lines)

are imported.

The grammar of Figure 2.2 is used to parse PICO programs, like Figure 2.1. The abstract

syntax tree, result of parsing the program and desugaring the parse tree is shown in Fig-
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1 program (
d e c l s ( [

3 d e c l ( ” i n p u t ” , n a t u r a l ) ,
d e c l ( ” o u t p u t ” , n a t u r a l ) ,

5 d e c l ( ” r e p n r ” , n a t u r a l ) ,
d e c l ( ” r e p ” , n a t u r a l )

7 ] ) ,
[

9 a s s i g n m e n t ( ” i n p u t ” , n a t c o n ( 14 ) ) ,
a s s i g n m e n t ( ” o u t p u t ” , n a t c o n ( 1 ) ) ,

11 w h i l e ( sub ( i d ( ” i n p u t ” ) , n a t c o n ( 1 ) ) , [
a s s i g n m e n t ( ” r e p ” , i d ( ” o u t p u t ” ) ) ,

13 a s s i g n m e n t ( ” r e p n r ” , i d ( ” i n p u t ” ) ) ,
w h i l e ( sub ( i d ( ” r e p n r ” ) , n a t c o n ( 1 ) ) , [

15 a s s i g n m e n t ( ” o u t p u t ” , add ( i d ( ” o u t p u t ” ) ,
i d ( ” r e p ” ) ) ) ,

17 a s s i g n m e n t ( ” r e p n r ” , sub ( i d ( ” r e p n r ” ) ,
n a t c o n ( 1 ) ) )

19 ] ) ,
a s s i g n m e n t ( ” i n p u t ” , sub ( i d ( ” i n p u t ” ) ,

21 n a t c o n ( 1 ) ) )
] )

23 ]
)

Fig. 2.3 Abstract syntax tree of PICO program of Figure 2.1.

ure 2.3. The tree is displayed in the ATerm format, to be discussed in Section 2.6.3.

2.6.3 ATerms

The syntax for terms used in this book is based on a subset of the ATerms syntax [van den

Brand et al. (2000)]. ATerms have support for lists, which are not directly supported by

the presented regular tree grammars. Lists must be binary trees to stay fully compatible

with the regular tree grammars. The serialized term notation of the list is only a shorthand

notation for these binary trees, i.e. the list

[ "a", "b", "c" ]

has the internal representation

[ "a", [ "b", [ "c" , []]]].

Since the lists of ATerms are internally stored as binary trees, where the left branch is the

element and right branch the list or empty list, the use of ATerms meets this requirement.

The subset of the ATerm language is defined by the SDF definition of Figure 2.4.
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module ATerms
2

i m p o r t s St rCon
4 IdCon

6 e x p o r t s
s o r t s AFun ATerm

8
c o n t e x t−f r e e s y n t a x

10 StrCon −> AFun
IdCon −> AFun

12 AFun −> ATerm
AFun ” ( ” {ATerm ” ,”}+ ” ) ” −> ATerm

14 ” [ ” {ATerm ” ,”}∗ ” ] ” −> ATerm

Fig. 2.4 Subset of ATerm syntax used in this book.

The IdCon and StrCon are respectively defined as the following character classes

[A-Za-z][A-Za-z\-]*3 and ["]~[\0-\31\n\t\"\\]*["].

3The original character class for IdCon allows numeric symbols in the tail. These characters are not allowed to
prevent ambiguities in the tree path queries presented later on.
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Chapter 3

The Unparser

Code generators are metaprograms translating a regular tree to a sentence of a context-free

language. The metalanguage used to implement the code generator should be, on the one

side, expressive enough to be of practical value, and, on the other side, restricted enough

to enforce the separation between the view and the model, according to the model-view-

controller architecture (MVC, see Section 7.1.3) [Krasner and Pope (1988)]. In the MVC

architecture, templates are commonly used to implement the view of the internal data of an

application (model).

The MVC architecture decouples the models and its transformations from the view com-

ponents, hereby reducing the complexity and increasing the flexibility of the system. This

separation of concerns also allows different views for the same underlying model.

While in the original paper on MVC [Krasner and Pope (1988)] the view was expected

to send editing messages to the model, already in [Burbeck (1992)] this functionality was

restricted to the controller, and the view was only allowed to receive the messages from the

model to update the way the model is shown. This intuition was formalized in [Parr (2004)],

where it was argued that the view should neither alter the model nor perform calculations

depending on the semantics of the model. Unfortunately, the separation of view and logic

is not enforced in most existing template engines, such as JSP, i.e., it is possible to write

JSP templates with all logic in a single file. Typically, such a file will contain fragments

in HTML, JSP-tags, Java, and SQL. Not only does this file violate the MVC architecture

principle, because logic (model) and presentation (view) are not separated, but it is also

hard to understand the file due to different escaping characters required to support multiple

programming languages, executed at different stages.

In this chapter the unparser code generation pattern is presented and is shown that unparser-

complete metalanguages provide the right level of expressivity, i.e. not too weak and not

too powerful [Arnoldus et al. (2011)]. An unparser-complete metalanguage is capable

35
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of expressing an unparser: a code generator that translates any legal abstract syntax tree

into a semantically equivalent sentence of the corresponding context-free language. A

metalanguage not able to express an unparser will fail to produce all sentences belonging

to the corresponding context-free language.

The unparser translates an abstract syntax tree into a sentence of a context-free language.

It is semantically neutral, that means that parsing and desugaring the output sentence pro-

duced by an unparser can reproduce the abstract syntax tree. The unparser is capable to

instantiate all sentences of the output language, modulo layout and other semantically ir-

relevant syntax. This chapter discusses the properties and requirements of the unparser and

shows that a linear deterministic tree-to-string transducer is powerful enough to express the

unparser.

An unparser can be seen as a part of the “circle of code” shown in Figure 3.1, i.e. the circle

from concrete syntax to parse tree to abstract syntax and back to concrete syntax. The tex-

tual representation of a program obeying a context-free grammar (L (Gcfg) in Figure 3.1)

can be parsed to obtain the corresponding parse tree (L (Gpt)). The set of parse trees of

a context-free grammar is a regular tree language [Comon et al. (2008)]. Since the parse

tree contains exactly the same information as the textual representation, the textual repre-

sentation can be restored using the parse tree. The corresponding mapping from L (Gpt)

to L (Gcfg) is the yield function (see Definition 2.2.2). Alternatively, one can desugar the

parse tree, i.e., simplify it by removing the semantically irrelevant layout information. In

this way, an abstract syntax tree (L (Gast)) is obtained. Finally, the unparse function closes

the circle and maps elements of L (Gast) to L (Gcfg). Section 3.1 discusses the desugar

function followed by the discussion of the unparse in Section 3.2. After that, unparser-

completeness is discussed in Section 3.3.

3.1 Deriving Abstract Syntax Trees

A parse tree can be transformed in an abstract syntax tree. This transformation requires

that the meaning of the original sentence is not altered during the translation from a parse

tree to an abstract syntax tree. This requirement is expressed in Figure 3.1 by the cycle of

the application of unparse◦desugar◦parse. Equal meaning of a program is defined by the

following property: Given a parse tree tpt and an abstract syntax tree tast representing the

same piece of object code and given a function f1 operating on tpt, resulting in a term t,

and f2 operating on tast resulting in the same t, it is required that f1(tpt) = f2(tast), where

tast = desugar(tpt). For example, the parse tree of a C program and the abstract syntax tree
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parse

layout

L (Gcfg)

yield

L (Gpt)

desugar

L (Gast)

unparse

Fig. 3.1 Relations between languages and their grammars.

of the same program should result in the same assembler code after compilation. By means

of that definition, the required detail of the abstract syntax is dependent on the information

used by the function f2 processing it. In other words, a function, only interested in a subset

of the semantics of a programming language, can use a less detailed abstract syntax than a

function using every detail of the programming language. Therefor, the desugar function

is defined in the context of the required detail of the input tree for function f2 and not

generic. In this chapter, we present a generic desugar function, where the level of detail of

the resulting tast is defined by labels in the parse tree tpt.

The topic of this chapter is to derive the unparse function from the context-free grammar

of the output language. However, in order to generate a textual representation from an ab-

stract syntax tree the unparser should be aware of the mapping between concrete syntax

constructs and abstract syntax constructs. It is not a goal to design the most compact ab-

stract syntax for a given f2, but a formal notion of abstract syntax is necessary to discuss

the properties of metaprograms instantiating code. In practice, an abstract syntax tree rep-

resentation is based on the parse tree modulo layout information and keywords. In the next

paragraphs an approach for transforming a parse tree to an abstract syntax tree is presented.

The desugar function can be manually defined in the parser definition, like in parser im-

plementations such as YACC [Johnson (1975)], ANTLR [Parr and Quong (1995)] and

Beaver1. These parsers allow associating a production rule with a semantic action in the
1http://beaver.sourceforge.net/ (accessed on December 18, 2011)
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grammar. These semantic actions, for example specified in a third generation programming

language, can directly instantiate an abstract syntax tree. Another way to construct the

mapping is by means of heuristics [Wile (1997)]. This approach will introduce machine-

generated names for the abstract syntax tree nodes.

A desugar function can also be defined in a semi-automatic manner. In order to retain

the full control of the abstract syntax constructs, the abstract syntax constructs (signature

labels) are integrated with the production rules of a context-free grammar. Formally, a

production rule in the augmented context-free grammar has the form n→ z{c} where n∈N,

z ∈ (N∪Σ)∗ and c is an element of an alphabet Σ ′. The set Σ ′ is the alphabet of the regular

tree grammar belonging to the abstract syntax and is not necessarily disjoint from N ∪Σ .

It is not allowed to use a signature label c multiple times. In order to remove the layout

and other superfluous syntax, it is allowed, under strict conditions, to have production rules

without signature labels. These conditions are in the case of:

• Layout syntax - The nonterminals belonging to the layout syntax, such as whitespaces

and comment, should not be defined with a signature label. The desugar function, as

defined in Section 3.1, excludes these syntax from the tree. It is mandatory, that the

layout syntax include the empty string ε , as the layout is not restored by the automatic

derived unparser.

• Chain rules - It is allowed that production rules of the form n1 → n2, are not accom-

panied with a signature label. The abstract syntax belonging to n2 is propagated to n1,

which is allowed, since all signature labels are unique. Furthermore, it is allowed that

n2 is surrounded by layout nonterminals, as these layout syntaxes contain the empty

string.

Example 3.1.1 (Augmented context-free grammar). The following set of production

rules show the extension of the context-free grammar of Example 2.2.1 with signature

labels:

Prods =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E→ L T F→ “˜” L F {Not} L→ C L

E→ E “|” L T {Or} F→ “(” L E “)” L {Br} L→ ε
T→ F F→ “true” L {True} C→ “ ”

T→ T “&” L F {And} F→ “false” L {False} C→ “\n”

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

In presence of signature labels the term notation for the parse trees is adapted and written

as parse(s1 · s′1 · s2 · . . . · sr · s′r · sr+1) =< n,c > (s1, t ′1,s2, . . . ,sr, t ′r,sr+1), where n is the top

nonterminal, t ′1 . . . t
′
r are sub parse trees with top nonterminals n1 . . .nr, strings s1 . . .sr+1

are the terminals and c is the label associated with n → s1,n1,s2, . . . ,sr,nr,sr+1. If there
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is no such label, parse(s1 · s′1 · s2 · . . . · sr · s′r · sr+1) is defined as n(s1, t ′1,s2, . . . ,sr, t ′r,sr+1).

Furthermore, the function parse used in this article is complete.

The parse tree of s =~true & false | true, which results from parsing with the gram-

mar with signature information, will have the following form: dG(s) =

<E, Or>

E

L

ε

<T, And>

T

<F, Not>

˜ L

ε

<F, True>

true L

C L

ε

& L

C L

ε

<F, False>

false L

C L

ε

| L

C L

ε

T

<F, True>

true L

ε

and the term representation is:

dG(s) =

< E , Or >(

E( L (),

< T, And >(

T( <F, Not>( ~, L (),

<F, True>( true, L( C( ), L() ))

)),

&,

L( C( ), L() ),

<F, False>(false, L( C( ), L() ))

)

),

|,

L( C( ), L() ),

T( <F, True>( true, L() ))

)
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Having a context-free grammar with signature labels, the abstract syntax tree can be auto-

matically instantiated from a parse tree. This is executed by the desugar function, which

replaces the nodes in the parse tree with new nodes labeled by signature labels. The rank

of signature label c is equal to the number of augmented nonterminals in the corresponding

production rule of the context-free grammar. Nodes in the parse tree without a signature

label are removed from the tree. This mechanism facilitates the removal of nodes that do

not contain semantically significant information, such as layout syntax.

Definition 3.1.1 (Desugar). The desugar function is defined by the following equations:

desugar(x) = ε if x ∈ Σ
desugar( f (x1, . . . ,xr)) = dc(x1, . . . ,xr)

desugar(< f ,c > (x1, . . . ,xr)) ={
c if dc(x1, . . . ,xr) = ε
c(dc(x1, . . . ,xr)) if dc(x1,x2, . . . ,xr) ̸= ε

and
dc() = ε
dc(x1,x2, . . . ,xr) =⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dc(x2, . . . ,xr) if x1 ∈ Σ
desugar(x1),dc(x2, . . . ,xr) if x1 /∈ Σ and

dc(x2, . . . ,xr) ̸= ε
desugar(x1) otherwise

Example 3.1.2 (Desugar). Applying the desugar function to the parse tree t of

~true & false | true using the grammar of Example 3.1.1 will result in the abstract

syntax tree: desugar(t) = Or(And(Not(True),False),True). "

Observe that Definition 3.1.1 ensures termination of desugar as long as its argument is a

finite tree. Indeed, each subsequent call to desugar or dc reduces the size of the input argu-

ment either by removing the function symbol, e.g., desugar( f (x1, . . . ,xr)) = dc(x1, . . . ,xr)

or by reducing the number of arguments in the call, e.g., dc(x1,x2, . . . ,xr) = dc(x2, . . . ,xr).

Theorem 3.1.1. The abstract syntax tree obtained by applying the desugar function to a

parse tree belongs to a regular tree language [Cleophas (2009)].

Proof. Recognizability of trees by finite tree automata is closed under linear tree homomor-

phism [Engelfriet (1974)]. The desugar function is a linear tree homomorphism; subtrees

are only removed and not duplicated. Since the abstract syntax tree is a linear tree ho-

momorphism of the parse tree and the set of parse trees of a context-free language is a
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regular tree language [Comon et al. (2008)], the abstract syntax tree belongs to a regular

tree language.

The mapping of a parse tree to an abstract syntax tree is regular, which suggests there

exists a mapping between the regular tree grammar of the parse tree Gpt and the regular

tree grammar of the abstract syntax tree Gast. There is indeed a mapping:

Definition 3.1.2 (Mapping parse tree grammar to abstract syntax tree grammar). Let

Gpt = ⟨Σ ,N,S,Prods⟩ be the regular tree grammar of the parse tree (see Definition 2.4.1),

the regular tree grammar Gast = ⟨Σ ′,N′,S′,Prods′⟩ is derived via the following rules:

The start symbol of both grammars is equal: S = S′. The set of nonterminals of the regular

tree grammar is a subset of N, i.e. N′ ⊂ N. N′ contains all nonterminals n, which at least

appears one time in the left-hand side of a production rule augmented with a signature label

c. The alphabet of Gast is Σ ′ = Σc. Σc is the alphabet containing the symbols c1, . . . ,c j used

for augmenting the production rules of a context-free grammar with signature labels. The

set of productions Prods′ of Gast is the result set obtained by matching every production

rule in Prods on the following patterns:

• n→< n,c > (z1 . . .zr), then n→ c(makeRhs(z1, . . . ,zr))) ∈ Prods′

when makeRhs(z1, . . . ,zr) ̸= ε
• n→ n(z1 . . .zr), then n→ makeRhs(z1, . . . ,zr) ∈ Prods′

when |makeRhs(z1, . . . ,zr)|= 1

• Otherwise, no production rule is added to Prods′

where

makeRhs() = ε
makeRhs(z1,z2, . . . ,zr) =⎧
⎪⎪⎨

⎪⎪⎩

makeRhs(z2, . . . ,zr) if z1 /∈ N′

z1,makeRhs(z2, . . . ,zr) if z1 ∈ N′ and makeRhs(z2, . . . ,zr) ̸= ε
z1 otherwise

Example 3.1.3 (Mapping Gpt to Gast). The result of the mapping of Gpt to Gast for the

language of Example 2.2.1 is a regular tree grammar with Σ = { And( , ), Or( , ), Not( ),

Br( ), True, False }, nonterminals N = {E, T, F}, start symbol S = E and rules

Prods =

⎧
⎪⎪⎨

⎪⎪⎩

E→ T F→ Not(F) T→ F

T→ And(T,F) E→ Or(E,T) F→ Br(E)

F→ True F→ False

⎫
⎪⎪⎬

⎪⎪⎭
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3.2 The Unparser Generation Pattern

In contrast with the parse◦ yield couple, where the yield always restores the original code

including layout from a parse tree, this is not the case for abstract syntax trees. The ab-

stract syntax trees lack information to reconstruct the original sentences, since the original

keywords are implicitly stored in the nodes and not explicitly in leaves. As a result, it is

necessary to define a function per Gast to reconstruct a concrete syntax representation of its

abstract syntax trees. This function is called the unparse function: It translates an abstract

syntax tree into a textual representation of the sentence.

In contrast with the yield function, it is not possible to guarantee that unparsed code is

syntactically equivalent to the parsed code. Superfluous information, like layout, is not

present in the abstract syntax tree and has to be induced by default rules in the unparser

definition. The unparse function can indeed be used as a code formatter [van den Brand

and Visser (1996)]. The unparser cannot restore the original code for an arbitrary case,

except the one, where the layout of the original code matches the layout syntax defined in

the unparser. The following relation reflects this property:

L (Gcfg)⊇ unparse(desugar(parse(L (Gcfg))))

However, the unparse function should produce a text which is syntactically correct and

represents the original abstract syntax tree. The unparser is correct if and only if re-parsing

its output sentences reproduce the same abstract syntax trees as the original inputs [Ramsey

(1998)]. That is, as the couple of unparse and desugar only executes a syntactical mapping

and does not alter the meaning of the code represented by the concrete syntax or the ab-

stract syntax. The abstract syntax contains all semantic information, and this information

should be present in the unparsed sentence without altering it. Parsing and desugaring this

unparsed code must result in the same abstract syntax tree, otherwise information is lost or

altered somewhere in the process. The following relation reflects this property:

L (Gast) = desugar(parse(unparse(L (Gast))))

The signature of the unparse function is:

unparse : Tree→ String

The unparse function traverses a tree, just as the yield function does. The unparser differs

from the yield function (see Definition 2.2.2) as it is not a generic tree traversal function,

but is tailored for the abstract syntax grammar of the input. The yield function is a traversal

function accepting every parse tree, while an unparse function has an action for every
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production rule in the regular tree grammar of the abstract syntax. The unparse function

restores the mapping defined by the desugar function. Where the desugar function removes

terminals from the parse tree, the unparser actions must restore the removed terminals.

Terminals are removed from nodes at different levels in the parse tree and to restore them

actions must be defined in the unparse function to restore these terminals. As a result

the unparse function follows the structure of the abstract syntax grammar and can only be

applied to trees produced by that grammar.

The unparse function can be derived from a context-free grammar extended with signa-

tures. For each production rule in the context-free grammar there is a case in the definition

of unparse, called an action, allowing unparse to traverse the abstract syntax tree and to

restore terminals whenever needed. For instance, in Example 3.1.1, given the produc-

tion rule T→ T “&” L F {And}, the definition of the unparser should have an action for

unparse(And(x′,x′′)). Each action in unparse has a left-hand side and a right-hand side,

see Example 3.2.2. First, the definition to derive an unparser from a given context-free

grammar is provided.

Definition 3.2.1 (Unparse). Let Gcfg = ⟨Σ ,N,S,Prods⟩ be a context-free grammar aug-

mented with signature labels, where N′ is the set of non-terminals defined by the produc-

tion rules with a signature label. Then, the corresponding function unparse is defined by a

set of actions Actions such that for any n→ z1 . . .zr{c} ∈ Prods

• either makeLhs(z1, . . . ,zr,1) ̸= ε and

unparse(c(makeLhs(z1, . . . ,zr,1))) = makeRhs(z1, . . . ,zr,1) ∈ Actions,

• or makeLhs(z1, . . . ,zr,1) = ε and

unparse(c) = makeRhs(z1, . . . ,zr,1) ∈ Actions,

where

makeLhs(i) = ε
makeLhs(z1,z2, . . . ,z j, i) =⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

makeLhs(z2, . . . ,z j, i+1) if z1 /∈ N′

xi,makeLhs(z2, . . . ,z j, i+1) if z1 ∈ N′and

makeLhs(z2, . . . ,z j, i+1) ̸= ε
xi otherwise
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and

makeRhs(i) = ε
makeRhs(z1,z2 . . . ,z j, i) =⎧
⎪⎪⎨

⎪⎪⎩

z1 ·makeRhs(z2, . . . ,z j, i+1) if z1 ∈ Σ
unparse(xi) ·makeRhs(z2, . . . ,z j, i+1) if z1 ∈ N′

makeRhs(z2, . . . ,z j, i+1) if z1 /∈ (N′ ∪Σ)

and · denotes the string concatenation operation.

Example 3.2.1. Definition 3.2.1 is illustrated using the production rule T →
T “&” L F {And} from Example 3.1.1. Then, the set N′ of non-terminals corresponding

to production rules with signature labels is {E, F, T}. Hence, “&” and L should be omitted

from the left-hand side of the unparser action:

makeLhs(T,“&”,L,F,1) = x1,makeLhs(“&”,L,F,2)

= x1,makeLhs(L,F,3) =

= x1,makeLhs(F,4) =

= x1,x4

since makeLhs(5) = ε . Similarly, for the right-hand side of the action, L is ignored :

makeRhs(T,“&”,L,F,1) = unparse(x1) ·makeRhs(“&”,L,F,2) =

unparse(x1) · “&” ·makeRhs(L,F,3) =

unparse(x1) · “&” ·makeRhs(F,4) =

unparse(x1) · “&” ·unparse(x4) ·makeRhs(5) =

unparse(x1) · “&” ·unparse(x4) · ε =

unparse(x1) · “&” ·unparse(x4)

Since makeLhs(T,“&”,L,F,1) ̸= ε , the action corresponding to T→ T “&” L F {And} is

unparse(And(x1,x4)) = unparse(x1) · “&” ·unparse(x4). "

The left-hand side matches on a node in the abstract syntax tree with the signature label c

and the variables x1, . . . ,xr are assigned to the subtrees belonging to the label c. Following

the previous definition, the rank of c, i.e., the number of arguments of c created by makeLhs,

is not necessarily equal to r: the rank of c is equal to the number of nonterminals in the

pattern of the production rule labeled c in the augmented context-free grammar. Therefore,

the variable xi only exists in the action unparse(c(. . .)) = . . . if a symbol at index i in the

right-hand side of the corresponding production rule is a nonterminal n ∈ N′. The right-

hand side constructs a string s1 · . . . · sr. The number of strings r is equal to the number of

symbols in the pattern of the corresponding production rule. Each si is either a string or a
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recursive unparser invocation. Specifically, si is a string, if a terminal is defined at index i

in the production rule; an unparser invocation, if a nonterminal n ∈N′ is defined at position

i, and ε for the remaining case if ni /∈ (N′ ∪Σ).

Example 3.2.2. Example 3.2.1, continued. Given the aforementioned production rules,

the following unparser is derived:

unparse(Not(x3)) = “˜” ·unparse(x3)

unparse(And(x1,x4)) = unparse(x1) · “&” ·unparse(x4)

unparse(Or(x1,x4)) = unparse(x1) · “|” ·unparse(x4)

unparse(Br(x3)) = “(” ·unparse(x3) · “)”

unparse(True) = “true”

unparse(False) = “false”

"

In the presented boolean example removing the spaces has not changed the meaning, nor

the recognizability by the parser, of the boolean expression. However, for some languages

it is not allowed to yield a string without a whitespace character between the unparsed sub

strings, since two unparsed sub strings can become one string without a natural separation.

In that case the right-hand patterns of the unparser must be s1 ·5 · . . . ·5 · sr, where 5 is a

whitespace character. An example of this problem is a sequence of two identifiers, which

are separated by a space in the original code. They will be parsed as a single identifier

when they are concatenated by an unparser without using a whitespace character separat-

ing them. This can happen with a language such as Java where method declarations have a

type followed by a method name, where both can be an identifier.

The unparser derived according to Definition 3.2.1 is linear and deterministic. An unparser

is linear if for each action in the unparser and every xi in the action, xi occurs not more than

once in the action’s right-hand side. The unparser is called deterministic if actions have

incompatible left-hand sides, i.e., for every tree there exists only one applicable unparser

action.

Theorem 3.2.1. The unparser derived according to Definition 3.2.1 is linear and deter-

ministic.

Proof. Linearity follows from Definition 3.2.1: every variable appearing on the right hand

side appears only once. Recall that a signature label c is used once in the augmented
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context-free tree grammar. A signature label c directly corresponds to one action in

unparse(c(x1, . . . ,xk)). Since a signature label c is used for only one production rule, the

left-hand sides of the unparser are unique and thus the unparser is deterministic.

Definition 3.2.1 also ensures that unparse always terminates if its argument is a finite tree.

Recall that unparse(. . .) for n→ z1 . . .zr{c} distinguishes between makeLhs(z1, . . . ,zr,1) =

ε and makeLhs(z1, . . . ,zr,1) ̸= ε . However, makeLhs(z1, . . . ,zr,1) = ε holds only if zi ∈ Σ
for all i, 1 ≤ i ≤ r. Therefore, the right-hand side expression makeRhs(z1,z2 . . . ,zr,1) =

z1 · . . . · zr and unparse is defined as unparse(c) = z1 · . . . · zr. Since the right-hand side of

the latter equation does not contain calls to unparse, it cannot introduce non-termination.

The remaining case is makeLhs(z1, . . . ,zr,1) ̸= ε . In this case unparse is defined as

unparse(c(makeLhs(z1, . . . ,zr,1))) = makeRhs(z1, . . . ,zr,1). Termination stems from the

fact that every variable appearing on the right hand-side appears in the left-hand side, and

from the reduction in the term size between the left-hand side and the right-hand side terms.

3.3 Unparser Completeness

In the past sections the desugar function and unparse function are defined. A metalanguage

capable to express an unparser function is called unparser-complete. In this section it is

shown that unparser-completeness is a more restricted notion than Turing-completeness.

To establish this result it is shown that the unparser as defined in Definition 3.2.1 can be

expressed by a linear deterministic top-down tree-to-string transducer, and recall that the

top-down tree-to-string transducer is strictly less powerful than a Turing machine, i.e., the

languages top-down-tree-to-string transducers accept are a subset of the languages Turing

machines can accept [Virágh (1981)].

Definition 3.3.1 (Top-down tree-to-string transducer). [Engelfriet et al. (1980)]. A top-

down tree-to-string transducer is a 5-tuple M = ⟨Q,Σ ,Σ ′,q0,R⟩, where Q is a finite set of

states, Σ is the ranked input alphabet, Σ ′ is the output alphabet, q0 ∈ Q is the initial state,

and R is a finite set of rules of the form:

q(σ(x1, . . . ,xk))→ s1q1(xi1)s2q2(xi2) . . .spqp(xip)sp+1

with k, p≥ 0; q,q1, . . . ,qp ∈Q; σ ∈ Σk; s1, . . . ,sp+1 ∈ Σ ′∗, and 1≤ i j ≤ k for 1≤ j ≤ p (if

k = 0 then the left-hand side is q(c)). M is called deterministic if different rules in R have

different left-hand sides. M is called linear if, for each rule in R, no xi occurs more than

once in its right-hand side.
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Example 3.3.1. Unparser in Example 3.2.2 can be seen as a top-down tree-to-string

transducer ⟨Q,Σ ,Σ ′,q0,R⟩ such that the set of states Q = {unparse}, the input alpha-

bet Σ = {Not,And,Or,Br, True,False}, the output alphabet Σ ′ = {“˜”,“&”,“|”,“(”,“)”,

“true”,“false”} and the finite set of rules R is given by actions defining the unparser in

Example 3.2.2.

Next, for each context-free grammar an unparser can be defined using a linear and deter-

ministic top-down tree-to-string transducer. Furthermore, any unparser corresponding to

Definition 3.2.1 can be mapped on a top-down tree-to-string transducer.

Theorem 3.3.1. An unparser based on a linear deterministic top-down tree-to-string trans-

ducer can be defined for every context-free grammar augmented with signature labels.

Proof. Every production rule in a context-free grammar can be projected on the form

n → s1n1s2 . . .srnrsr+1{c}, where s1, . . . ,sr+1 are strings and may be the empty string ε ,

and n,n1, . . . ,nr are the nonterminals. In case the pattern s1s2 occurs, the strings can be

concatenated into a new string s′1. It is assumed that the augmented grammar meets the

requirements for augmenting a grammar with signature labels as sketched in Section 3.1.

The abstract syntax tree belonging to this production rule is: tast = c(t1, . . . , tr), where

t1, . . . , tr are the abstract syntax trees belonging to n1 . . .nr. The corresponding tree-to-

string transducer rule is: q(c(x1, . . . ,xr))→ s1q1(x1)s2 . . .srqr(xr)sr+1, where q,q1, . . . ,qr

are transducer states. Application of the transducer to the abstract syntax tree consists in

matching the tree against the pattern c(x1, . . . ,xr) and replacing it with a string originating

from s1q1(x1)s2 . . .srqr(xr)sr+1, where q1(x1), . . . ,qr(xr) have been recursively applied to

t1, . . . , tr, i.e., q(c(t1, . . . , tr)) = s1 · s′1 · s2 · . . . · sr · s′r · sr+1, where s′1 = q1(t1) . . .s′r = qr(tr).

In Chapter 4 this match-replace intuition will be used to define an eponymous construct in

the unparser-complete metalanguage.

Parsing s1 ·s′1 ·s2 · . . . ·sr ·s′r ·sr+1 produces a parse tree parse(s1 ·s′1 ·s2 · . . . ·sr ·s′r ·sr+1) =<

n,c > (s1, t ′1,s2, . . . ,sr, t ′r,sr+1), where t ′1 . . . t
′
r are sub parse trees with top nonterminals

n1 . . .nr and strings s1 . . .sr+1 are the terminals. The abstract syntax tree is desugar(< n,c>

(s1, t ′1,s2, . . . ,sr, t ′r,sr+1)) = c(t1 . . . tr), where t1 = desugar(t ′1), . . . , tr = desugar(t ′r), which

is equal to the original abstract syntax tree. Since this relation holds for every production

rule in a context-free language, the unparser can be defined using a top-down tree-to-string

transducer for every context-free language.

The proof that L (Gcfg)⊇ unparse(desugar(parse(L (Gcfg)))) also holds is almost similar

to the proof of Theorem 3.3.1. One should take the string s as starting point instead of the
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abstract syntax tree. The superset relation is a result of the fact that layout is not available

in the abstract syntax tree and as a result it cannot be literally restored during unparsing.

The language produced by the unparser is thus always a sentence of L (Gcfg), but the set

of sentences of L (Gcfg) is greater than the set of sentences the unparser can produce.

Theorem 3.3.2. The relation L (Gcfg)⊇ unparse(desugar(parse(L (Gcfg)))) holds for the

unparser.

Proof. First, similarly to the proof of Theorem 3.3.1, the relation

L (Gast) = desugar(parse(unparse(L (Gast))))

holds when using a context-free grammar without production rules for layout syntax. Next

L (Gcfg) is extended with layout syntax resulting in L (Gcfg)′, then L (Gcfg)′ ⊃L (Gcfg),

since every sentence without layout must be in L (Gcfg)′, otherwise the languages are not

semantically equal. Thus every sentence the unparser produce must be at least in L (Gcfg),

otherwise the unparse function does not meet the requirement of the unparser to be seman-

tically transparent.

The last step is that the unparser is linear and deterministic.

Theorem 3.3.3. The unparser of Definition 3.2.1 is a linear and deterministic top-down

tree-to-string transducer.

Proof. The derivation of an unparser using Definition 3.2.1 can be mapped on a top-down

tree-to-string transducer. Considering Definition 3.2.1 the unparser contains actions of the

form:

unparse(c) = s

unparse(c(x1, . . . ,xr)) = s1 ·unparse(x1) · . . . · sr

·unparse(xr) · sr+1

The similarity with the top-down tree-to-string transducer is obvious. Substitute the occur-

rences of unparse by states named q and the unparser becomes a tree-to-string transducer.

The unparser is linear, since each xi occurs once on the left-hand side and once on the

right-hand side.

The unparser is also deterministic, since it is derived from a context-free grammar aug-

mented with signature labels, where each signature label is only used for one production

rule.
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These theorems show that an unparser can be specified using a linear deterministic top-

down tree-to-string transducer.

Recall that the top-down tree-to-string transducer is strictly less powerful than the Turing

machine, i.e., top-down-tree-to-string transducers accept a subset of the languages Turing

machines can accept [Virágh (1981)]. Indeed, the class of tree languages a top-down tree-

to-string transducer can recognize is equal to its corresponding finite tree automaton [En-

gelfriet et al. (1980)]. Unlike a Turing machine, a top-down tree-to-string transducer cannot

change the input tree on which it operates but only emit a string while processing the in-

put tree. The class of languages the top-down tree-to-string transducer accepts is the class

of path-closed tree languages [Virágh (1981)]. This class of tree languages is a subset of

regular tree languages [Comon et al. (2008)]. The languages of abstract syntax trees of the

augmented grammar are path-closed, since a signature label is only used for one production

rule.

3.4 Conclusions

The relations between concrete syntax, abstract syntax trees and their grammars are dis-

cussed. The unparser translates an abstract syntax to a concrete syntax and is a metapro-

gram instantiating code with two specific properties: parsing and desugaring its output

results in the original abstract syntax tree of the used input, and the unparser can instantiate

all meaningful sentences of the output language.

The formal notion and properties of unparser-completeness are defined. Unparser-

completeness of a metalanguage provides the balance between expressivity and restric-

tiveness. On one hand, the metalanguage is expressive enough to implement an unparser,

and, hence, can instantiate any semantically correct program in the object language. On the

other hand, the metalanguage is restricted enough to enforce the model-view separation in

terms of [Parr (2004)]. In the next chapter this notion of unparser-completeness is used to

define a metalanguage for templates.

A linear deterministic top-down tree-to-string transducer is powerful enough to implement

an unparser. Using the notion of the top-down tree-to-string transducer it has been shown

that unparser-completeness is a weaker notion than Turing-completeness, i.e., unparser-

complete metalanguages are not necessarily Turing-complete. The enforcement of separa-

tion of concerns is also met, as this transducer does not allow expressing calculations or

modifying the model.
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Chapter 4

The Metalanguage

This chapter introduces an unparser-complete metalanguage for templates. The syntax and

operational semantics of the constructs are given. The constructs of this metalanguage

are based on the concepts of the theoretical framework of Chapter 3. As a result, the

metalanguage is strong enough to specify unparsers, and still enforces a separation of model

and view.

The requirements for the metalanguage are:

• Powerful enough to express an unparser.

• Minimize the possibilities for expressing calculations in the template.

The first requirement guarantees that the metalanguage enforces no unnecessary limitations

on the sentences that templates can instantiate, since an unparser is capable to instantiate

all meaningful sentences of its output language.

The second requirement is to enforce separation of model and view. Inspired by [Parr

(2004)], the unparser-complete metalanguage should be strong enough to express the view,

i.e. unparsers, but it should limit the possibility that model specific code and calculations

are specified in the metaprogram instantiating the code. This is essential to prevent the use

of templates for computations that are not part of rendering the view. The availability of a

general-purpose metalanguage does not prevent to write complete programs in the template,

which breaks the model-view-controller (MVC) architecture. The MVC architecture is

discussed in Section 7.1.3.

In Section 4.1, a formal definition of code generators is provided. Section 4.2 discusses

the metalanguage and provides a formal specification of its operational semantics. The

unparser-complete metalanguage is compared with related template systems in Section 4.4.

The comparison uses a case study based on the implementation of an unparser for the PICO

language.
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4.1 Code Generators

Two metaprograms for instantiating code are already presented in Chapters 2 and 3. The

first is the yield function, see Definition 2.2.2. The second is the unparse function, see

Definition 3.2.1. The yield function reconstructs a sentence from an arbitrary parse tree

of an arbitrary context-free language. It is the most generic metaprogram as it generates

a sentence from every arbitrary parse tree. The yield function does not depend on the

structure of the tree and only considers the leaves of the tree. The only requirement for the

yield function to get a well-formed output sentence is a well-formed input parse tree.

The unparse function is not limited to parse trees and allows abstract syntax trees as input.

The abstract syntax tree lacks syntactic information, like layout information, to restore the

original code it represents. The unparse function contains the missing syntax in its rules to

restore the syntactic sugar missing in the abstract syntax tree. For both the yield function

and unparse function it should be noticed that no semantic information is added to or

removed from the generated sentence. Only the representation of the sentence is changed.

The unparse function can be considered as a set of small templates, where each unparse

equation contains a subtemplate based on the corresponding production rule. For instance,

consider the right-hand side of the unparser for the or case in Example 3.2.2:

unparse(Or(x1,x4)) = unparse(x1) · “|” ·unparse(x4).

It consists of two recursive calls to the unparse function in order to convert subtrees x1

and x4 to strings and it contains the lexical representation of the Or operator, i.e. |. This

metaprogram transforms an input tree with the Or signature to a concrete syntax represen-

tation without altering its meaning.

Just as the unparse function, the code generator function CG converts a tree into a string

and has the signature:

CG : Tree→ String

The properties of a code generator are defined by the following definition:

Definition 4.1.1 (Code generator). A code generator CG, instantiating sentences of a

given L (Gcfg) modulo layout, is a function producing at least two sentences of L (Gcfg)

and at most the set of sentences defined by L (Gcfg).

This definition excludes metaprograms producing exactly one sentence of L (Gcfg):

CG(x) = s, where s ∈L (Gcfg) and x matches every tree.
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No external information is necessary to complete the sentence; it is already complete. All

semantic information is a priori available in the result sentence of the code generator and

the input data has no influence on it. Given that input data is not necessary, the language of

the output code is independent of the input data language. When the input data is empty, i.e.

no semantic information is specified, this metaprogram will always generate a sentence s.

Since only one sentence s is generated, its functionality domain is limited to the semantics

of s.

The unparser is a kind of code generator, however the domain of code generators is broader.

The relation

L (Grtg) = desugar(parse(cg(L (G′rtg))))

does not have to hold for a code generator , and it is not required that Grtg and G′rtg are

equal, since the input data may contain less details than the output code. A code generator

is not necessarily linear and data may be copied, i.e. it may contain rules of the form

CG( f (x)) = CG(x) ·CG(x). The code generator must be deterministic; otherwise it can

generate different output sentences for a given input tree.

Example 4.1.1 (Code generator). Considering the unparse function of Example 3.2.2,

once one or more recursive calls in the right-hand side of the equations is substituted by a

fixed sentence of terminals or a variable is used more than once in the right-hand side, the

unparser becomes a code generator. To illustrate it, the unparse rule for the Or is changed.

First by substituting one call by a fixed sentence of terminals:

unparse(Or(x1,x4)) = unparse(x1) · “|” ·unparse(x4)

is changed to:

CG( f (x)) = “true” · “|” ·CG(x)

It is no longer possible to use it as unparse function, since the set of sentences the code gen-

erator can produce is a subset of the sentences belonging to the output language L (Gbool).

The unparse(x1) call can return all sentences belonging to the output language L (Gbool),

while in CG it is replaced by “true”. “true”⊂L (Gbool), so the sentences CG can produce

is a subset of L (Gbool).

An example of the second case is the nonlinear code generator:

CG( f (x)) = CG(x) · “|” ·CG(x)

This code generator always produces sentences of the form s1 | s2, where s1 and s2 are equal

and s1 and s2 are sentences of L (Gbool), while the unparser allows to generate sentences
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where s1 and s2 are not necessarily equal. This code generator only produces a subset of

sentences of L (Gbool), as the set of sentences produced by the template s1 | s2, where s1

and s2 are equal, is a subset of the sentences where s1 and s2 are not necessarily equal.

Finally, it is not necessary that CG accept the abstract syntax language of the output lan-

guage Gbool.

The way an unparser is changed into a code generator is related to partial evaluation [Futa-

mura (1999)]. Informally, some code generators can be obtained by evaluating the unparser

using a non-complete abstract syntax tree. The result is a not complete evaluated template.

Considering the semantics, a code generator has the following properties. First, without

input data the code generator cannot produce a valid well-formed output sentence, since

information is missing. Second, the code generator is not semantic neutral. Contrary to

the unparser, the code generator is allowed to add semantic information to the input data or

remove semantic information from the input data. As a result the input data tree will only

generate a subset of sentences belonging to the output language, or the input data tree can

contain more meaningful information than the sentences of the output language can reflect.

4.2 The Unparser Complete Metalanguage

The unparse function, see Definition 3.2.1, is the starting point for the design of the

unparser-complete metalanguage. This section discusses the provided metalanguage con-

structs, which are based on the requirements for implementing an unparser. Beside the

syntax of the constructs, their formalized operational semantics are presented.

In this chapter a template is considered as a string of characters1, where it is allowed to

have placeholders containing instructions. A placeholder is written between the character

sequences <: and :>; the so-called hedges. These hedges act as markers to indicate the

transition between the object code and the metacode. Since a template is a string with

placeholders these hedges are obligatory; otherwise it is not possible to make a distinction

between object code and metacode. The syntax of the hedges is free, as long as they are

disjoint of character sequences used in the object language.

The template evaluator executes the evaluation of the placeholders. It searches for place-

holders in the string and replaces them using information from the input data tree. The

instructions of the placeholders are evaluated to obtain a string to replace the placeholders.

When all placeholders are replaced the evaluator is finished.

1A template is a sentence of a template grammar in Chapter 5.

b.j.arnoldus@repleo.nl



The Metalanguage 55

Considering the unparse function of Section 3.2 two kinds of instructions can be identi-

fied. The first selects an unparse action based on matching a pattern on a piece of the

input data and binds metavariables to subtrees of it. Second, equations have names of the

form unparse, which are called in the right-hand side of the equations having a variable as

argument. Two constructs implement this functionality:

• Match-replace (Section 4.2.4);

• Subtemplates (Section 4.2.3).

Match-replace is a mechanism to match on input data (sub)trees and depending on a match,

returning another (sub) sentence. Subtemplates enable generation of recursive structures,

like lists and trees. Next to these kernel constructs derived placeholders are available, which

are abbreviations for constructions using subtemplates and match-replace placeholders:

• Substitution (Section 4.2.5);

• Conditional (Section 4.2.6);

• Iteration (Section 4.2.7).

These placeholder constructs are discussed in the coming sections. The metalanguage is

discussed by means of a (informal) syntax definition and operational semantics. The oper-

ational semantics of the different metalanguage constructs depends on the way templates

are evaluated. First, the general function evaluating a template is discussed. After the gen-

eral function is introduced, the syntax and operation semantics of the different placeholder

constructs are described.

4.2.1 Template Evaluation

This section discusses the eval function, which defines the interpretation of the unparser-

complete metalanguage. This eval function evaluates a template using some input data

resulting in an output sentence and has the following signature:

eval : Template×Templates×MVars→ String.

The eval function has three arguments, the first argument Template contains the current

template (a string containing placeholders) under evaluation, the other two arguments are

context information. The String is the result of the template evaluation. For now, assume

that the eval function can detect metalanguage code in the template string and call itself

recursively to replace these placeholders with strings. This detection of placeholders is not
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discussed in detail, since an approach based on a combination of object language grammar

and metalanguage grammar will be presented in Chapter 5 .

The context arguments, Templates and MVars, are both symbol tables, where Templates

contains (sub)templates and MVars contains metavariables. The symbol table Templates is

initialized with all (sub)templates defined at the start of the evaluation. The symbol table

MVars contains all assigned metavariables. During evaluation MVars is continuously up-

dated.

The eval function is not directly invoked to start a template evaluation, but a helper function

start is used. This function initializes the context of the eval function and has the following

signature:

start : Templates× InputData→ String

where Templates is a set of (sub)templates stored in a symbol table and InputData is a tree

representing the input data. Before presenting the equations of the eval function, it must

be noted that the equations used in this book should be interpreted as a conditional term

rewriting system [Alpuente et al. (1994)]. The equations have the form:

t1 8→ t ′1
. . .

ti 8→ t ′i
t 8→ t ′

where t, t ′, t1, t ′1, . . . , ti, t ′i are terms. The 8→ must be read as results in or maps to. The

equation should be then read as “If the rewriting of t1 results in t ′1, . . ., of ti results in t ′i then

rewriting of t results in t ′”. Terms after the 8→ sign may contain an updated value, used in

the remaining (sub) equations. For example, consider the equation:

add(bstvars,$root, t) 8→ bstvars

If before the equation bstvars equals to { }, then after evaluation bstvars will hold the value

{root 8→ t}. Next to 8→, the equations support the operators = and ∈. The “=” should be

read as “If t1 is equal to t2 then continue with . . . ”. The “∈” should be read as “If t1 is

an element of the set t2 then continue with . . . ”. These are conditional operations and the

equation is only completed when all statements are true.
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The start function is defined as follows:

startblk([]) 8→ bstvars1

add(bstvars1,$root, t) 8→ bstvars2

add(bstvars2,$$, t) 8→ bstvars3

startblk(bstvars3) 8→ bstvars4

start(sttmps, t) 8→ eval(<: template() :>,sttmps,bstvars4)

where sttmps is a symbol table containing the subtemplates, t is the input data tree and bstvars

contains the block-structured symbol table for the metavariables. The functions startblk,

add and eval used in the equation of the start function are defined in the following sub-

sections. The start function has some operational consequences: First it assigns the input

data tree to the metavariables $root and $$, where $root is intended as a global metavari-

able containing the original input data tree. The $$ metavariable is an internal metavariable

which is updated to hold a current context of the input data tree. It has the same behavior as

the “normal” metavariables, but is only implicitly accessible, since the concrete syntax of

metavariables does not allow to write $$ as identifier for a metavariable. Furthermore the

start function shows that a template with the name template is the starting point of evalu-

ation, since the fixed template in the right-hand side of the start function contains a call to

that template.

The different equations for the recursive eval function are defined by the semantics of the

placeholders in the coming subsections. For completeness, the cases for the string without

placeholders and the empty string are given by the following equations:

eval(ε,sttmps,bstvars) 8→ ε;

eval(s,sttmps,bstvars) 8→ s, when s does not contain a placeholder.

4.2.2 Block-Structured Symbol Table

The (sub)templates and metavariables are stored in symbol tables. A simple symbol table

is used to store the (sub)templates and a block-structured symbol table for metavariables.

The block-structured symbol table is a simple symbol table extended with the operations for

starting and finishing a block. Both kinds of symbol tables are defined in [Hayes (1987)].

The operations supported by these symbol tables are:

• add - Adds a metavariable to a block.

• lookup - Searches for a metavariable and returns its value.

• startblk - Starts a new block to add metavariables.
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• stopblk - Removes the latest added block of metavariables.

The standard operations of a symbol table delete and update are not necessary for this

metalanguage, since reassignment of metavariables with a new value is not possible in a

scope and deletion of metavariables is also not possible.

The operations and behavior of a simple symbol table are discussed. A symbol table is

modeled by a partial function from symbol, SYM, to values, VAL:

st : SYM ! VAL

The arrow “!” indicates that a function from SYM to VAL is not necessarily defined for all

elements of SYM (hence ‘partial’). The subset of SYM for which the symbol table provides

a value is defined as: dom(st). The set of symbols defined by dom(st) is the alphabet Σst

of the symbol table. If a symbol a ∈ Σst, that is a ∈ dom(st), then st(a) is the unique value

associated with a and hence st(a) ∈ VAL. The notation {a 8→ t} describes a function that is

only defined for a

dom({a 8→ t}) 8→ {a}

which maps a to t

{a 8→ t}(a) 8→ t

More generally, the notation

{a1 8→ t1,a2 8→ t2, . . . ,a j 8→ t j}

where all the ai’s are distinct is used to define a function whose domain is

{a1,a2, . . . ,a j}

and whose value for each ai is the corresponding ti. For example, if a number of metavari-

ables are assigned to a subtree of the input data

st = {$lhs 8→ sub( id( “repnr” ), natcon( 1 ) ),$natcon 8→ 1,$id 8→ “repnr”}

The domain of st is dom(st) = {$lhs,$natcon,$id} and

st($lhs) 8→ sub( id( “repnr” ), natcon( 1 ) )

st($natcon) 8→ 1

st($id) 8→ “repnr”
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The notation { } is used to denote the empty symbol table, where dom({}) = ∅. Initially

the symbol table is empty, i.e. st = {}.

The next step is to introduce block-structured symbol tables. The requirement for a block-

structured symbol table is that metavariables assigned in a parent block can be looked up

in a child block and that a metavariable assigned in a child block can override an earlier

assigned metavariable of its parent block(s). A block-structured symbol table is a sequence

of simple symbol tables, one for each nested block, where functions in the last defined

simple symbol table override the functions of earlier instantiated symbol tables. First a

definition of function overriding is provided.

Definition 4.2.1 (Function overriding [Hayes (1987)]). The operator ⊕ combines two

functions of the same type to a give a new function. The new function f ⊕g is defined for

an argument a if either

• dom( f ⊕g) = dom( f )∪dom(g);

• ( f ⊕g)(a) = g(a), when a ∈ dom(g);

• ( f ⊕g)(a) = f (a), when a /∈ dom(g) and a ∈ dom( f ).

Example 4.2.1 (Function overriding). An example of function overriding is shown by

the following equations:

{$id 8→ “repnr”,$lhs 8→ sub( id( “repnr” ), natcon( 1 ) )}

⊕{$lhs 8→ id( “repnr” ),$rhs 8→ natcon( 1 )}

= {$id 8→ “repnr”,$lhs 8→ id( “repnr” ),$rhs 8→ natcon( 1 )}

A block-structured symbol table bst is modeled as a sequence of symbol tables st, where

the first symbol table st is the outermost block and the last st′ is the innermost block.

The empty block-structured symbol table is bst = [ ]. For example at a given point in

the template the bst contains the blocks bst = [st,st ′], where st = {$id 8→ “repnr”,$lhs 8→
sub( id( “repnr” ) natcon( 1 ) )} and st′ = {$lhs 8→ id( “repnr” ),$rhs 8→ natcon( 1 )}. The

environment for that point is a single stenv obtained by combining all the symbol tables of

bst using the equation: stenv = st1⊕ . . .⊕ sti, where sti refers to the innermost block.
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The function env, with the signature env : bst→ st, obtains an stenv from a given bst and is

defined by the following equations:

env([]) 8→ {}

env([st]) 8→ st

env([st1,st2, . . . ,sti]) 8→ st1⊕ env(st2, . . . ,sti)

The function startblk, with the signature startblk : bst → bst, appends an empty symbol

table st to bst and is defined by the following equations:

startblk([]) 8→ [{}]

startblk([st1, . . . ,sti]) 8→ [st1, . . . ,sti,{}]

The function stopblk, with the signature stopblk : bst→ bst, removes the last symbol table

st to bst and is defined by the following equations:

stopblk([]) 8→ []

stopblk([st1]) 8→ []

stopblk([st1, . . . ,sti−1,sti]) 8→ [st1, . . . ,sti−1]

The function add, with the signature add : bst×a× t → bst, adds a new metavariable to the

last added symbol table and is defined by the following equations:

a /∈ dom(st)
add([st],a,x) 8→ [st ∪{a 8→ x}]

a /∈ dom(sti)
add([st1, . . . ,sti],a,x) 8→ [st1, . . . ,sti∪{a 8→ x}]

The function lookup, with the signature lookup : bst×a→ t, uses the given block-structured

symbol table to lookup the latest defined value t of a given a and is defined by the following

equation:

env(bst) 8→ st

a ∈ dom(st)
lookup(bst,a) 8→ st(a)

The use of the symbol table has two requirements. First, the operation add has the re-

quirement that the symbol a should not be present in the innermost symbol table. Second,

the operation lookup has the requirement that the symbol a is present in the symbol ta-

ble env(bst). In case these requirements are not met an error must be generated such as

metavariable "a" already defined or metavariable "a" not found.

b.j.arnoldus@repleo.nl



The Metalanguage 61

4.2.3 Subtemplates

Subtemplates are a mechanism to compose a template of multiple smaller fragments. The

first reason for having subtemplates is to enable recursion, i.e. that it is possible that a

(sub)template can instantiate itself. Recursion is essential to generate tree or list structures.

The second reason for a subtemplate mechanism is to reduce the number of code clones in

a template definition.

Two constructs are necessary to implement subtemplates, i.e. the declaration and invoca-

tion. The concrete syntax of the declaration of a (sub)template is:

IdCon[ String ]

where IdCon is the name of the subtemplate and String contains the (sub)template which

contains output document characters with placeholders. A set of (sub)templates is a list of

these declarations, which is mapped to the symbol table sttmps used for the evaluation of

the templates. The symbol table sttmps is initialized by mapping subtemplates of the form

IdCon[ String ] to symbol table functions of the form a 8→ t, where a is equal to the

Identifier and t is equal to the String. The symbol table requires that each a is unique,

thus each template must have a unique identifier. The lexical character class for IdCon is

equal to the character class as defined in Section 2.6.3. The start function requires that at

least one template is defined with the name template.

The second construct is the subtemplate call statement. This placeholder is used in a tem-

plate and replaced by the result of an evaluated subtemplate. The syntax of a subtemplate

call placeholder is:

<: IdCon( Expr ) :>

where IdCon is the identifier of the called subtemplate and Expr contains an expression to

set a new value for the context metavariable $$. The evaluator replaces this placeholder by

the result of the evaluated subtemplate with the identifier IdCon. Before the subtemplate is

evaluated, the expression is evaluated to obtain a new context metavariable $$. The opera-
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tional semantics of the subtemplate call placeholder is defined by the following equation:

sttmps(idcon) 8→ s

eval(s1,sttmps,bstvars1) 8→ s′1
eval(s3,sttmps,bstvars1) 8→ s′3
startblk(bstvars1) 8→ bstvars2

add(bstvars2,$$,evalexpr(expr,bstvars2)) 8→ bstvars3

eval(s,sttmps,bstvars3) 8→ s′2
eval(s1<: idcon(expr) :>s3,sttmps,bstvars1) 8→ s′1 · s′2 · s′3

The expression Expr is used to obtain a new value for the internal context metavariable $$.

Expr supports the following operations:

• Metavariable lookup ($IdCon);

• String constants ("Lorem ipsum");

• Tree path queries (a1b2), see Definition 4.2.2;

• String concatenation (Expr + Expr);

• No operation.

The syntax of the expressions is defined by the following set of context-free production

rules:

Expr→ Expr + Expr

Expr→ $IdCon

Expr→ String

Expr→ Treequery

Expr→ $IdCon Treequery

Expr→ ε

The string concatenation is only allowed when both expressions reduces to strings, i.e. a

leaf symbol. The evaluation of the expressions is defined by the following equations:

evalexpr(e1,bstvars) 8→ e′1
evalexpr(e2,bstvars) 8→ e′2

rank(e′1) = 0

rank(e′2) = 0
evalexpr(e1 + e2,bstvars) 8→ e′1 · e′2
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c ∈ Σvars

lookup(bstvars,c) 8→ t
evalexpr(c,bstvars) 8→ t

lookup(bstvars,$$) 8→ t

evaltreequery(t, tq) 8→ t ′

evalexpr(tq,bstvars) 8→ t ′

c ∈ Σvars

lookup(bstvars,c) 8→ t

evaltreequery(t, tq) 8→ t ′

evalexpr(ctq,bstvars) 8→ t ′

evalexpr(c,bstvars) 8→ c

evalexpr(ε,bstvars) 8→ lookup(bstvars,$$)

The tree path queries are (sub) sentences of the path language belonging to the regular tree

grammar of the input data. Path languages for regular tree languages are defined by the

following definition:

Definition 4.2.2 (Path language [Comon et al. (2008)]). Let t be a ground term, the path

language π(t) is defined inductively by:

• if t ∈ Σ0, then π(t) = t;

• if t = f (t1, . . . , tr) then π(t) =
⋃i=r

i=1{ f · i · s|s ∈ π(ti)}.

Example 4.2.2 (Path language [Cleophas (2008)]). For t = a(b(c),a(c,c)) the path lan-

guage π(t) is π(t) = {a1b1c,a2a1c,a2a2c}.

A tree path query is a (sub) sentence of π(t), where t is the tree of the current context

metavariable $$ or the tree obtained from the metavariable symbol table. The evaluation

of a tree path query starts at the root of the tree t and selects a subtree or leaf symbol

by sequential stepping down through the tree using the nodes specified in the query. The

subtree or leaf symbol where the tree path query points to is returned by the tree path query

evaluator for further processing by the expression evaluator.

The input is represented as an ATerm [van den Brand et al. (2000)], see Section 2.6.3. The

ATerm format supports lists, but it is not supported to select an element in these lists; a tree

path query may only point to a list node.
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The evaluation equations for a tree path query are given below:

f = c

r ≥ i
evaltreequery( f (x1, . . . ,xr),⟨c, i, t⟩) 8→ evaltreequery(xi, t)

f = c

r ≥ i
evaltreequery( f (x1, . . . ,xr),⟨c, i⟩) 8→ xi

f = c

r < i
evaltreequery( f (x1, . . . ,xr),⟨c, i, t⟩) 8→ ε

f = c

r < i
evaltreequery( f (x1, . . . ,xr),⟨c, i⟩) 8→ ε

f ̸= c
evaltreequery( f (x1, . . . ,xr),⟨c, i, t⟩) 8→ ε

f ̸= c
evaltreequery( f (x1, . . . ,xr),⟨c, i⟩) 8→ ε

evaltreequery([x1, . . . ,xr],⟨c, i, t⟩) 8→ ε

evaltreequery([x1, . . . ,xr],⟨c, i⟩) 8→ ε

evaltreequery([x1, . . . ,xr],⟨c⟩) 8→ ε

evaltreequery( f (x1, . . . ,xr),⟨c⟩) 8→ ε

c′ = c
evaltreequery(c,⟨c′⟩) 8→ c

c′ ̸= c
evaltreequery(c,⟨c′⟩) 8→ ε

Note for expressing tree path queries in the evaltreequery, a tree path query string is mapped

to a nested set of tuples of the form ⟨c, i, t⟩, ⟨c, i⟩ or ⟨c⟩, where c is the current node la-

bel, i the index and t the tail of the tree path query. For example a1b1c is mapped to

⟨a,1,⟨b,2,⟨c⟩⟩⟩.
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Example 4.2.3 (Expressions). Table 4.1 shows the evaluation result of a number of dif-

ferent kinds of expressions. The tree provided as context for the tree path query evaluation

is: t = a(b(“s1”),a([c(“s2”),c(“s3”)])).

Table 4.1 Expression examples.

Expression Result

“a” “a”

“a”+ “b” “ab”

a1b1 “s1”

a1 b(“s1”)

a2a1 [c(“s2”),c(“s3”)]

a2a1c1 ε
b1 ε
a1b1+ “a” “s1a”

a1b1+a1b1 “s1s1”

Example 4.2.4 (Subtemplate placeholder). An example of the declarations of subtem-

plates is shown in Figure 4.1. The result of this template is after evaluation:

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Integer elementum porta facilisis.

The <: sub( ) :> calls the subtemplate sub and inserts the result in the calling template.

The call has no expression, since no input data context has to be selected.

1 t e m p l a t e [
Lorem ipsum d o l o r s i t amet , <: sub ( ) :> .

3 I n t e g e r elementum p o r t a f a c i l i s i s .
]

5
sub [

7 c o n s e c t e t u r a d i p i s c i n g e l i t
]

Fig. 4.1 Subtemplate example.
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4.2.4 Match-Replace

The match-replace placeholder is a construct to specify a finite set of match-rules contain-

ing a result string. This result string may contain placeholders, which are evaluated before

it is used to replace the match-replace placeholder. The behavior of the construct is compa-

rable to a switch-case statement, i.e. a match-rule is selected based on the first match. The

syntax of the match-replace is:

<: match :>

<: Matchpattern =:> String

...

<: Matchpattern =:> String

<: end :>

As the syntax shows, the match-replace contains a set of match-rules mr, which return a

string. The match-rules contain a match-pattern and a result string, in the equations the

abstract notation ⟨mp,s⟩ for match-rules is used, where mp is the Matchpattern and s

the String. A simple match-rule selection algorithm is used, where the first rule with a

successful match is selected. It is possible that no match-rule matches the current (sub)tree

of the input data. In that case an error is generated.

Match-rules are matched against the current tree assigned to the internal metavariable $$.

The match-pattern may define metavariables, which are bound to subtrees of the matched

tree. These assigned metavariables are stored in a new scope of the symbol table. The string

of the selected match-rule is evaluated using the symbol table containing the metavariables

assigned during the matching process. The scope of a metavariable is the evaluated string,

including recursively applied placeholders. Metavariables assigned in inner blocks hide

metavariables assigned in parent blocks, as the semantics of the block-structured symbol

table already defines.

First the evaluation of the match-replace placeholder itself is discussed. After that, the

match-patterns and tree matching algorithm are formalized. In case of an error the match-
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replace returns an object ERROR. The ERROR is used to inform the user about the failure.

eval(s1,sttmps,bstvars1) 8→ s′1
eval(s3,sttmps,bstvars1) 8→ s′3

lookup(bstvars1,$$) 8→ t

startblk(bstvars1) 8→ bstvars2

findmatch(t, [mr1, . . . ,mri],bstvars2) 8→ ⟨s,bstvars3⟩
eval(s,sttmps,bstvars3) 8→ s′2

eval(s1<: match :>[mr1, . . . ,mri] <: end :>s3,sttmps,bstvars1) 8→ s′1 · s′2 · s′3

eval(s1,sttmps,bstvars1) 8→ s′1
eval(s3,sttmps,bstvars1) 8→ s′3

lookup(bstvars1,$$) 8→ t

startblk(bstvars1) 8→ bstvars2

findmatch(t, [mr1, . . . ,mri],bstvars2) = ε
eval(s1<: match :>[mr1, . . . ,mri] <: end :>s3,sttmps,bstvars1) 8→ ERROR

match(t,mr1,bstvars) = ε
findmatch(t, [mr1,mr2 . . . ,mri],bstvars) 8→ findmatch(t, [mr2 . . . ,mri],bstvars)

match(t,mr,bstvars) = ε
findmatch(t, [mr],bstvars) 8→ ε

match(t,mr1,bstvars) 8→ ⟨s,bstvars⟩
findmatch(t, [mr1,mr2 . . . ,mri],bstvars) 8→ ⟨s,bstvars⟩

match(t,mr,bstvars) 8→ ⟨s,bstvars⟩
findmatch(t, [mr],bstvars) 8→ ⟨s,bstvars⟩

The syntax of the match-pattern is similar to the ATerm tree syntax, defined in Section 2.6.3,

augmented with syntax for metavariables. IdCon syntactically limits the alphabet of the

labels of these trees Σ . The syntax of the metavariables is defined as an IdCon prefixed

with a dollar sign. The alphabet of metavariables Σvars is thus always disjoint from Σ ,

since the dollar-sign is not allowed for IdCon. Note that the internal used metavariable $$

is always disjoint of Σ ∪Σvars, since its syntax is not a sentence of IdCon neither of IdCon

prefixed with a dollar-sign. The rank of a metavariable is c ∈ Σvars is rank(c) = 0, as it is

always a leaf node. It is allowed to have lists in the ATerm tree syntax. These lists are a

shorthand notation for binary trees, and are matched via the pattern [mp1, . . . ,mpk], where

mp1, . . . ,mpk are match-patterns. The underlying binary tree structure of lists has as effect
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that the last match-pattern mpk in the pattern [mp1, . . . ,mpk] is matched against the tail of

the list. The tail contains the remaining list or empty list.

The tree pattern matcher is implemented as a root-to-frontier pattern matcher [Cleophas

(2008)]. The matching mechanism is minimalistic and does for example not support

associative-commutative matching such as provided by TOM [Moreau et al. (2003)]. It

tries to match the tree, and during matching it adds the assigned metavariables to the symbol

table bstvars. The match function has the signature: Tree×Matchpattern×MVars→MVars.

Its operations are defined by the following equations:

f = f ′

match(x1,mp1,bstvars1) 8→ bstvars2

. . .

match(xr,mpr,bstvars(r)) 8→ bstvars(r+1)

match( f (x1, . . . ,xr), f ′(mp1, . . . ,mpr),bstvars1) 8→ bstvars(r+1)

f ̸= f ′

match( f (x1, . . . ,xr), f ′(mp1, . . . ,mpr),bstvars) 8→ ε

match(x1,mp1,bstvars1) 8→ bstvars2

match([x2, . . . ,xr], [mp2, . . . ,mpk],bstvars2) 8→ bstvars3

match([x1,x2, . . . ,xr], [mp1,mp2, . . . ,mpk],bstvars1) 8→ bstvars3

match(x,mp,bstvars1) 8→ bstvars2

match([x], [mp],bstvars1) 8→ bstvars2

match([x1, . . . ,xr],mp,bstvars1) 8→ bstvars2

match([x1, . . . ,xr], [mp],bstvars1) 8→ bstvars2

match([], [],bstvars) 8→ bstvars

c′ /∈ Σmvar

c = c′

match(c,c′,bstvars) 8→ bstvars

c′ /∈ Σmvar

c ̸= c′

match(c,c′,bstvars) 8→ ε

c ∈ Σmvar

bstvars ̸= ε
match(t,c,bstvars) 8→ add(bstvars,c, t)
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c ∈ Σmvar

bstvars = ε
match(t,c,bstvars) 8→ ε

Table 4.2 Match pattern examples.

Input Data MatchPattern bstvars

“a” “b” ε
“b” “b” ⟨{}⟩
a(“b”) a($x) ⟨{$x 8→ “b”}⟩
a(b(“c”),d(“e”)) a($x,d($y)) ⟨{$x 8→ b(“c”),$y 8→ “e”}⟩
[] [] ⟨{}⟩
[“a”] [$x,$y] ⟨{$x 8→ “a”,$y 8→ []}⟩
[“a”,“b”,“c”] [$x,$y] ⟨{$x 8→ “a”,$y 8→ [“b”,“c”]}⟩
[“a”,“b”] [$x,$y, []] ⟨{$x 8→ “a”,$y 8→ “b”}⟩

The Table 4.2 shows some examples of trees, match patterns and the resulting symbol table.

When a match fails the result is ε .

The match-replace placeholder can also be accompanied with an expression:

<: match Expr :>

<: Matchpattern =:> String

...

<: Matchpattern =:> String

<: end :>

This construction is an abbreviation for a combination of the match-replace placeholder

and subtemplates and can be rewritten to the following subtemplate call placeholder:

<: id( Expr ) :>

and subtemplate:

id[

<: match :>

<: Matchpattern =:> String

...

<: Matchpattern =:> String
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<: end :>

]

where the value of id should be unique to prevent collisions with other subtemplates, i.e.

the value of id should be hygienic [Kohlbecker et al. (1986)].

The match-replace is a verbose construction for some common operations like substitution,

iteration and conditional. The next presented placeholders are abbreviations for the match-

replace and are more intuitive for programmers with an imperative background.

4.2.5 Substitution

The substitution placeholder provides a one-to-one insertion of a leaf symbol of the input

data tree into the template. The syntax of the substitution placeholder is:

<: Expr :>

The evaluator replaces the substitution placeholder by a string. The value of this string is

obtained by evaluating the Expr.

The informal operational semantics of this placeholder are straightforward. The expression

is evaluated, which must yield a string, otherwise an error is generated. This result of the

expression substitutes the placeholder in the template.

Formally, the evaluation of the substitution placeholder can be written as a combination of

subtemplates and match-replace placeholders. Consider Figure 4.2, the substitution place-

holder on the left side of the arrow can be replaced by a subtemplate call placeholder, i.e.

<: id(Expr) :> accompanied by two subtemplates. This subtemplate call placeholder

sets a new value for the context metavariable $$. It calls the subtemplate id, which iter-

ates over the list of characters in the string, and a string can indeed be mapped to a list of

characters. The subtemplate idc is called per character, which maps every character in the

input data to a character in the object code. The number of match-rules in this mapping is

equal to the number of characters supported by the string type of the input data. Note that

the names of the subtemplates id and idc must be unique to ensure they do not conflict with

other declared subtemplates.
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<: Expr :> ⇒

<: id(Expr) :>

id[

<: match :>

< [$mchar;$chars] =:>

<: idc($mchar) :><: id($chars) :>

<: [] =:>

<: end :>

]

idc[

<: match :>

<: a =:>a

.

.

.

<: Z =:>Z

<: end :>

]

Fig. 4.2 Translation of substitution placeholder to match-replace and subtemplates.

4.2.6 Conditional

The conditional placeholder selects a result string based on the result of a condition. The

syntax of the conditional placeholder is inspired by the if-then(-else) construct that can be

found in most imperative languages:

<: if Expr == Matchpattern then :>

String ( <: else :> String )?

<: fi :>

The if-then(-else) construct consists of an condition to select the result strings. The condi-

tion contains an Expr and a Matchpattern. The Expr is used to calculate a value from

the input data. This result of the expression is matched against the Matchpattern; when

the match is successful the string of the then-part is inserted. In case of an unsuccessful
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match the else-part is inserted, or when this part is unspecified, nothing is inserted. The

chosen string may contain placeholders and is evaluated before inserting it in the template.

The conditional placeholder can be rewritten to a match-replace placeholder. The trans-

lation is defined by the mappings of Figure 4.3 and Figure 4.4. The first mapping is the

if-then-else, the second mapping is the if-then. At the translation of the if-then, the miss-

ing else-part must be defined in the match-replace placeholder. Without this second rule

for the empty result, the evaluation of the match-replace placeholder will produce an er-

ror when the first match pattern does not match. Since the if-then(-else) is rewritten to a

match-replace placeholder, it is possible to have metavariables in the match pattern of the

conditional. During translation the match pattern is only used for the then-part, as a result

the metavariables of that match pattern are only available in that part. The else part uses the

default match pattern $x, so $x is assigned to the result of the expression in case the then

part is selected.

<:if Expr == Matchpattern then:>

s1

<:else:>

s2

<:fi:>

⇒

<: match Expr :>

<: Matchpattern =:> s1

<: $x =:> s2

<: end :>

Fig. 4.3 Translation of if-the-else to match-replace.

<:if Expr == Matchpattern then:>

s

<:fi:>

⇒

<: match Expr :>

<: Matchpattern =:> s

<: $x =:>

<: end :>

Fig. 4.4 Translation of if-then to match-replace.

4.2.7 Iteration

The iteration placeholder is an abbreviation for the match-replace placeholder for handling

lists. It contains an expression to select a list from the input data and it contains a re-

sult string, which is instantiated for every element in the list. During iteration the current

element is assigned to a user definable metavariable $IdCon in order to use it in the place-

holders of the string. The syntax of the iteration placeholder is:
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<: foreach $IdCon in Expr do :>

String ( <: sep :> String )?

<: od :>

A separator can be defined in case of a separated list. The mapping of an iteration place-

holder to a match-replace placeholder is defined in Figure 4.5 and Figure 4.6. The metavari-

able $IdCon contains the element of the iteration. The metavariable $tail is bound to the tail

of the list and recursively invokes the subtemplate id with this new context via a subtem-

plate call. The identifier of the subtemplate id must be unique to remove possible conflicts.

The first translation, of Figure 4.5, is for non-separated lists and the second translation, of

Figure 4.6, is for separated lists. In the second case, three match-rules are necessary to han-

dle the separator in a correct way. A separator must only be inserted between two elements

and is not allowed to terminate a list, which is prevented by the second rule. Section 6.7

discusses why this extra rule becomes superfluous in a syntax-safe template evaluator.

<: foreach $IdCon in Expr do :>

s

<: od :>

⇒

id[<: match Expr :>

<: [] =:> e

<: [$IdCon;$tail] =:>

s <: id($tail) :>

<: end :>]

Fig. 4.5 Translation of iteration placeholder to match-replace placeholder (non-separated lists).

<:foreach $IdCon in Expr do:>

s <: sep :> s(sep)

<:od:>

⇒

id[<: match Expr :>

<: [] =:> e

<: [$IdCon] =:> s

<: [$IdCon;$tail] =:>

s s(sep) <: id($tail) :>

<: end :>]

Fig. 4.6 Translation of iteration placeholder with separator to match-replace placeholder (separated
lists).

4.2.8 Unparser Completeness

The presented metalanguage is intentionally minimalistic to prevent it for using for com-

putations other than rendering the view. The next theorem shows that the presented mini-
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malistic metalanguage is unparser-complete:

Theorem 4.2.1. A metalanguage containing constructions for subtemplates and match-

replace placeholders is unparser-complete.

Proof. Every production rule in a context-free grammar can be projected on the form

n → s1n1s2 . . .srnrsr+1{c}, where s1, . . . ,sr+1 are strings and may be the empty string ε ,

and n,n1, . . . ,nr are the nonterminals. In case the pattern s1s2 occurs, the strings can be

concatenated into a new string s′1. It is assumed that the augmented grammar meets the re-

quirements for augmenting a grammar with signature labels as sketched in Section 3.1. The

abstract syntax tree belonging to this production rule tast = c(t1, . . . , tr), where t1, . . . , tr are

the abstract syntax trees belonging to n1 . . .nr. The template belonging to this production

rule is: tmp =

unparse[

<: match :>

<: c( $x1, ... ,$xr ) =:>

s1 <: unparse( $x1 ) :> s2 ...

sr <: unparse( $xr ) :> sr+1

<: end :>

]

Normally, a grammar contains multiple production rules. Each production rule must be

implemented as a match rule in the unparse template.

Evaluating the template using the abstract syntax tree tast results in

start(tmp, tast)⇒ s1 · s′1 · s2 · . . . · sr · s′r · sr+1,

where s1 is the result of evaluating the template unparse with the input data tree bound to

$x1, and sr is the result of evaluating the template unparse with the input data tree bound

to $xr. Parsing the string s1 · s′1 · s2 · . . . · sr · s′r · sr+1 produces a parse tree parse(s1 · s′1 ·
s2 · . . . · sr · s′r · sr+1) =< n,c > (s1, t ′1,s2, . . . ,sr, t ′r,sr+1), where t ′1 . . . t

′
r are sub parse trees

with top nonterminals n1 . . .nr and strings s1 . . .sr+1 are the terminals. The abstract syntax

tree is desugar(< n,c > (s1, t ′1,s2, . . . ,sr, t ′r,sr+1)) = c(t1 . . . tr), where t1 = desugar(t ′1), . . . ,

tr = desugar(t ′r). This abstract syntax tree is equal to the original abstract syntax tree. Since

this relation holds for every production rule in a context-free language, the unparser can be

defined using a metalanguage providing subtemplates and match-replace placeholders.
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Theorem 4.2.1 shows that not every feature of the presented metalanguage is necessary

to meet the requirements for an unparser-complete metalanguage. First only metavariable

lookups are necessary, the other operations are for convenience during implementing code

generators. Second the stack of metavariables supporting blocks is superfluous when im-

plementing an unparser, since metavariables are only used in the scope of a match-replace

placeholder. However, referring to earlier assigned metavariables is sometimes necessary

(see case studies of Chapter 7), if only just for identifiers based on multiple labels in the

input data tree. An example is generating a get function with the name of the class and

field: getNaturalValue, where Natural is the class name and Value the field name.

4.3 Example: The PICO Unparser

The template of Figure 4.7 is an implementation of an PICO unparser and reconstructs the

concrete syntax for an abstract syntax tree of PICO. An example of such an abstract syntax

tree of a PICO program is shown in Figure 2.3. It is obtained by parsing and desugaring

the PICO program of Figure 2.1. This abstract syntax tree can be used as input data for

the template to obtain a concrete syntax representation of the PICO program. The layout

is not literally restored, since layout information is missing in the abstract syntax tree. The

template evaluator uses the layout as it is defined in the template.

This unparser implementation shows the application of the subtemplates, match-replace

placeholders and substitution placeholders. The unparser consists of the start template

template and a subtemplate for each nonterminal appearing in the right-hand side of a

context-free production rule. The subtemplates are necessary to handle the list structures

of the declarations and statements, and to handle the recursive structure of the statements

and expressions. They contain a match-replace placeholder to match on the subtree of the

abstract syntax belonging to the nonterminal of the sentences the match-replace placeholder

instantiates. The number of match-rules of the match-replace placeholders is equal to the

number of alternatives belonging to these nonterminals.
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t e m p l a t e [
2 <: match :>

<: program ( d e c l s ( $ d e c l s ) , $s tms ) =:>
4 b e g i n d e c l a r e

<: d e c l s ( $ d e c l s ) :> ;
6 <: s tms ( $s tms ):>

end
8 <: end :>]

d e c l s [
10 <: match :>

<: [ ] =:>
12 <: [ $head ] =:> <: i d t y p e ( $head ) :>

<: [ $head , $ t a i l ] =:> <: i d t y p e ( $head ) :> , <: d e c l s ( $ t a i l ) :>
14 <: end :>]

s tms [
16 <: match :>

<: [ ] =:>
18 <: [ $head ] =:> <: stm ( $head ) :>

<: [ $head , $ t a i l ] =:> <: stm ( $head ) :> ; <: s tms ( $ t a i l ) :>
20 <: end :>]

stm [
22 <: match :>

<: a s s i g n m e n t ( $id , $expr ) =:>
24 <: $ i d :> := <: exp r ( $expr ) :>

<: w h i l e ( $expr , $s tms ) =:> w h i l e <: exp r ( $expr ) :> do
26 <: s tms ( $s tms ):> od

<: i f ( $expr , $ thens tms , $ e l s e s t m s ) =:> i f <: exp r ( $expr ) :>
28 t h e n <: s tms ( $ t h e n s t m s ) :> e l s e <: s tms ( $ e l s e s t m s ) :> f i

<: end :>]
30 exp r [

<: match :>
32 <: n a t c o n ( $ n a t c o n ) =:> <: $ n a t c o n :>

<: s t r c o n ( $ s t r c o n ) =:> ”<: $ s t r c o n :>”
34 <: i d ( $ i d ) =:> <: $ i d :>

<: sub ( $ lhs , $ r h s ) =:> <: exp r ( $ l h s ) :> − <: exp r ( $ r h s ) :>
36 <: c o n c a t ( $ lh s , $ r h s ) =:> <: exp r ( $ l h s ) :> | | <: exp r ( $ r h s ) :>

<: add ( $ lhs , $ r h s ) =:> <: exp r ( $ l h s ) :> + <: exp r ( $ r h s ) :>
38 <: end :>]

i d t y p e [
40 <: match :>

<: d e c l ( $ id , $ t y p e ) =:> <: $ i d :> : <: t y p e ( $ t y p e ) :>
42 <: end :>]

t y p e [
44 <: match :>

<: n a t u r a l =:> n a t u r a l
46 <: s t r i n g =:> s t r i n g

<: end :>]

Fig. 4.7 PICO unparser based on templates.

b.j.arnoldus@repleo.nl



The Metalanguage 77

4.4 Related Template Systems

This section discusses the metalanguage of some related template systems. Three indus-

trially used template evaluators (ERb [Herrington (2003)], JSP [Bergsten (2002); Roth and

Pelegrı́-Llopart (2003)], and Velocity2) and an evaluator presented in the academic litera-

ture (StringTemplate [Parr (2004)]) are discussed. This selection is based on availability of

a working template evaluator and to show different metalanguages.

A metalanguage can be minimalistic, for example only using placeholders containing ref-

erence labels. The template evaluator replaces a placeholder with the referred label with

a piece of data instead that the placeholder describes an expression. Next to a minimalis-

tic programming language, a language, like Ruby or Java, can be used as metalanguage.

Template systems using a rich metalanguage are ERb, JSP, and Velocity. A system like

StringTemplate provides a metalanguage that is less powerful than a Turing-complete meta-

language.

The next sections present the industrial template evaluators ERb, JSP, and Velocity. They

are designed to generate HTML in web applications, although Herrington [Herrington

(2003)] uses ERb to generate code in a model driven engineering approach. The last

discussed template evaluator, StringTemplate, finds also its origin in the application as

a template evaluator for a dynamic website3. StringTemplate is used to investigate tem-

plate evaluators and metalanguage features in an academic setting. For each of these tem-

plate evaluators an implementation of the PICO unparser is provided. In Section 4.4.5 a

brief evaluation is given about the differences and similarities between the different meta-

languages.

4.4.1 ERb

ERb is a text-template interpreter for the programming language Ruby4. ERb introduces

special syntax constructs to embed Ruby code in a text file. There is no restriction on the

language ERb can generate as the metalanguage Ruby is Turing-complete.

The first main construct is <%= Ruby expression %>. Its behavior is similar to the ear-

lier defined substitution placeholder. The Ruby expression is evaluated and the result is

emitted to the output. An example of this construct is: Hello <%= "Jack" %> which

yields Hello Jack after evaluation.

2http://velocity.apache.org (accessed on December 18, 2011)
3http://www.jguru.com (accessed on December 18, 2011)
4http://www.ruby-lang.org (accessed on December 18, 2011)
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The second main construct is <% Ruby code %>, which embeds Ruby code in a template.

The code is executed, but output text is only emitted in the generated text when print state-

ments are used inside the Ruby code. Ruby statements can span multiple placeholders, so

it is possible to use the conditional and iteration statement provided by the Ruby language.

This approach to embed Ruby in a template is flexible. When a new language construct is

added to Ruby, it can immediately be used in an ERb template, because ERb does not have

any assumptions about the metalanguage, except that it must be Ruby.

1 <%
names = [ ]

3 names . push ({ ’ f i r s t ’ => ” Jack ” , ’ l a s t ’ => ” H e r r i n g t o n ”} )
names . push ({ ’ f i r s t ’ => ” L o r i ” , ’ l a s t ’ => ” H e r r i n g t o n ”} )

5 names . push ({ ’ f i r s t ’ => ”Megan ” , ’ l a s t ’ => ” H e r r i n g t o n ”} )
%>

7 <% names . each { | name | %>
H e l l o <%= name [ ’ f i r s t ’ ] %> <%= name [ ’ l a s t ’ ] %>

9 <% } %>

Fig. 4.8 ERb example [Herrington (2003)].

An example of an ERb template is presented in Figure 4.8. The first placeholder initializes

the array names. The second placeholder and the last placeholder are an iteration formed

by the Ruby iterator .each. The template text between those placeholders is emitted for

each element in the array names. The same construction of placeholders can also be used

for if statements and other Ruby constructs.

Figure 4.9 shows an implementation of the PICO unparser using ERb. The abstract syntax

trees of PICO represented as ATerms are mapped one-to-one to an XML representation,

such that it can be queried using XPath. The unparser is grouped in three subtemplates:

root, statements and expr. The root is the starting point of the unparser. At lines 4–9

it generates the variable declarations. Typical for the ERb implementation is the deletion

of the quote-sign (") in the query result, see the use of the gsub construct in line 6. This is

necessary as strings returned by the XML queries are surrounded by quotes. Also typical

for the ERb implementation is the separator handling using an if statement to check for

the last element, see line 8.

The way Ruby is embedded in ERb results in a limitation of the use of Ruby. Variables

in ERb are global accessible and writable in all (sub)templates, which makes out of the

box recursive evaluation impossible since earlier assigned variables with the same name in
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a calling template are overwritten. This is an important limitation, resulting in additional

boilerplate code to implement a stack mechanism in the template.

1 r o o t . e r b :
b e g i n

3 d e c l a r e
<% d e c l s = i n p u t d a t a . x p a t h ( ’ / / program / d e c l s / l i s t / dec l ’ ) ;

5 d e c l s . each { | d e c l | %>
<%= d e c l . x p a t h ( ’ va lue ’ ) . t e x t . gsub ( / \ ” / , ’ ’ ) %>:

7 <%= d e c l . x p a t h ( ’ ∗ [ 2 ] ’ ) . l a s t . name %>
<% i f d e c l != d e c l s . l a s t %>,<% end %>

9 <% } %>;
<% l a s t s t m = n i l %>

11 <% s t a t e m e n t s = i n p u t d a t a . x p a t h ( ’ / / program / l i s t /∗ ’ ) %>
<%= s u b t e m p l a t e ( ” s t a t e m e n t s . e r b ” , b i n d i n g)%>

13 end

15 s t a t e m e n t s . e r b :
<% s t a t e m e n t s . each { | stm | %>

17 <% s t a c k . push stm != s t a t e m e n t s . l a s t %>
<% c a s e stm . node name when ” a s s i g n m e n t ” t h e n %>

19 <%= stm . x p a t h ( ’ va lue ’ ) . t e x t . gsub ( / \ ” / , ’ ’ ) %> :=
<% ex p r = stm . x p a t h ( ’ ∗ [ 2 ] ’ ) ;

21 p r i n t s u b t e m p l a t e ( ” exp r . e r b ” , b i n d i n g ) %>
<% when ” w h i l e ” t h e n %> w h i l e

23 <% ex p r = stm . x p a t h ( ’ ∗ [ 1 ] ’ ) ;
p r i n t s u b t e m p l a t e ( ” exp r . e r b ” , b i n d i n g ) %> do

25 <% s t a c k . push s t a t e m e n t s %>
<% s t a t e m e n t s = stm . x p a t h ( ’ ∗ [ 2 ] / ∗ ’ ) ; %>

27 <%= s u b t e m p l a t e ( ” s t a t e m e n t s . e r b ” , b i n d i n g ) %>
<% s t a t e m e n t s = s t a c k . pop %> od

29 <% when ” i f ” t h e n %> i f <% ex p r = stm . x p a t h ( ’ ∗ [ 1 ] ’ ) ;
p r i n t s u b t e m p l a t e ( ” ex p r . e r b ” , b i n d i n g ) %> t h e n

31 <% s t a c k . push s t a t e m e n t s %>
<% s t a t e m e n t s = stm . x p a t h ( ’ ∗ [ 2 ] / ∗ ’ ) ; %>

33 <% s t a t e m e n t s 2 = stm . x p a t h ( ’ ∗ [ 3 ] / ∗ ’ ) ; %>
<% s t a c k . push s t a t e m e n t s 2 %>

35 <%= s u b t e m p l a t e ( ” s t a t e m e n t s . e r b ” , b i n d i n g ) %>
e l s e

37 <% s t a t e m e n t s = s t a c k . pop %>
<%= s u b t e m p l a t e ( ” s t a t e m e n t s . e r b ” , b i n d i n g ) %>

39 <% s t a t e m e n t s = s t a c k . pop %> f i
<% end %>

41 <% i f s t a c k . pop t h e n %>;<% end %>
<% } %>

Fig. 4.9 PICO unparser implemented using ERb.(to be continued)
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exp r . e r b :
44 <% c a s e ex p r . f i r s t . name

when ” n a t c o n ” t h e n %> <%= expr . x p a t h ( ’ va lue ’ ) . t e x t %>
46 <% when ” s t r c o n ” t h e n %> <%= expr . x p a t h ( ’ va lue ’ ) . t e x t %>

<%
when ” i d ” t h e n %> <%= expr . x p a t h ( ’ va lue ’ ) . t e x t . gsub ( / \ ” / , ’ ’ ) %>

48 <% when ” sub ” t h e n %> <% e x p r l = exp r . x p a t h ( ’ ∗ [ 1 ] ’ ) ;
s t a c k . push exp r . x p a t h ( ’ ∗ [ 2 ] ’ ) ; e x p r = e x p r l ;

50 p r i n t s u b t e m p l a t e ( ” exp r . e r b ” , b i n d i n g ) %> −
<% ex p r = s t a c k . pop ; p r i n t s u b t e m p l a t e ( ” e xp r . e r b ” , b i n d i n g ) %>

52 <% when ” c o n c a t ” t h e n %> <% e x p r l = exp r . x p a t h ( ’ ∗ [ 1 ] ’ ) ;
s t a c k . push exp r . x p a t h ( ’ ∗ [ 2 ] ’ ) ; e x p r = e x p r l ;

54 p r i n t s u b t e m p l a t e ( ” exp r . e r b ” , b i n d i n g ) %> | |
<% ex p r = s t a c k . pop ; p r i n t s u b t e m p l a t e ( ” e xp r . e r b ” , b i n d i n g ) %>

56 <% when ” add ” t h e n %> <% e x p r l = exp r . x p a t h ( ’ ∗ [ 1 ] ’ ) ;
s t a c k . push exp r . x p a t h ( ’ ∗ [ 2 ] ’ ) ; e x p r = e x p r l ;

58 p r i n t s u b t e m p l a t e ( ” exp r . e r b ” , b i n d i n g ) %> +
<% ex p r = s t a c k . pop ; p r i n t s u b t e m p l a t e ( ” e xp r . e r b ” , b i n d i n g ) %>

60 <% end %>

Fig. 4.10 PICO unparser implemented using ERb.(continued)

It is obligatory to support recursive template evaluation with scoped variables to have an

unparser-complete template evaluator. Since Ruby is offered as metalanguage, the problem

of global variables in ERb could be solved using an explicit stack mechanism in the tem-

plates. Consider the statements subtemplate, it iterates (line 16) over a list of statements

provided by the caller. At line 17 the current state of the iteration, i.e. whether the iteration

is not finished, is pushed on the stack. For correct separator handling, this value is popped

and used to generate a separator at line 41.

Lines 18–40 contain a case-switch, similar to the match-replace placeholder. It checks the

kind of the statement node in the input data to select the corresponding concrete syntax.

The if statement and while statement recursively contain statements and need to call the

statements subtemplate. When the statements subtemplate is recursively called, the

variable statements is pushed on the stack and a new value is assigned to the variable.

For example the while at lines 22–28, the content of the variable statements is pushed

at line 25, a new value is assigned to the variable at line 26 and the subtemplate is called at

line 27, finally the original value of the statements variable is reassigned to it at line 28.

The subtemplate expr for generating expressions works in a similar way.
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4.4.2 Java Server Pages

Java Server Pages (JSP) is a template based system developed by Sun Microsystems. It is

designed for generating dynamic web pages and XML messages in Java-based enterprise

systems. The aim of JSP is to provide separation between the object code and the content

generation. The complete Java language is available as metalanguage in JSP pages.

The evaluation of JSP pages is tuned for performance. This is achieved by having two

phases: a translation phase and a request phase. In a web environment a page is requested

via a client. The translation phase is done once per page at the first request. The JSP

compiler translates the JSP page to a Java servlet class where all object code is embedded

in println(...) statements, i.e. the translation phase converts the JSP page to a print

statement based code generator (Section 1.3.2). This servlet class is instantiated to answer

requests to generate the output code, i.e. HTML.

JSP provides two levels of instructions: JSP directives and JSP scripting elements. JSP

directives provide information for the translation phase that is independent of any specific

request. The scripting elements are the instructions that are executed at every request of the

servlet. These scripting elements are the placeholders of JSP.

JSP directives provide global information for instructing the JSP Compiler for creating the

servlet class. They have the following syntax:

<%@ directive { attr="value" }* %>.

Table 4.3 shows the standard directives. Lines 2–5 of Figure 4.11 contain directives to de-

fine the basic page settings for the JSP implementation of the PICO unparser. JSP supports

tag libraries, Java classes containing functionality, which can be called from a JSP page.

In Figure 4.11, the tag libraries for XML querying, string manipulation functions and core

functions are imported5.

Table 4.3 JSP Directives.

Element Description

<%@ page ... %> Defines page-dependent attributes, such as session

tracking, error page, and buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions,

that is used in the page.

5http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/c/tld-summary.html (accessed on December 18, 2011)
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JSP provides three types of scripting elements, see Table 4.4. The first two are equivalent

to the ERb placeholders; one for embedding Java code in a JSP page and one to define

expressions, where the output is directly emitted in the result. The third type of placeholder

is used to declare variables and methods that get inserted into the main body of the servlet

class. It can be used to declare methods, to be called from the template and to specify fields

for storing global information independent of single request.

Table 4.4 JSP Scripting Elements.

Element Description

<% ... %> Scriptlet, used to embed Java scripting code.

<%= ... %> Expression, used to embed scripting code expressions when

the result shall be added to the output code.

<%! ... %> Declaration, used to declare variables and methods

in the servlet body of the JSP page implementation class.

The JSP PICO unparser is shown in Figure 4.11. Comparing to the implementation of

Section 4.3, the following differences can be noticed. First, iteration is supported by a

foreach statement, as shown at lines 10–16. It generates a list of declarations, separated by

a comma. The list separator handling is implemented by a check at line 15. The if prevents

the generation of a comma at the last cycle of the iteration. The other difference is the

variable scoping supported by JSP. In contrast with the unparser-complete metalanguage,

JSP does not support a stack where variables are pushed and popped. The requirement

for the stack is that variables must be passed to a called (sub)template and variables in the

scope of the calling (sub)template should not be overwritten in the called (sub)template.

In case of recursion this easily happens, when the (sub)template calls itself and the same

variable names are used. For example in the Expr.jsp subtemplate defined at lines 65–100

of Figure 4.11. JSP offers a scoping mechanism for variables, where the page scope and

request scope are used. The variables in the page scope are only available in the page itself

and not in a called (sub)template, while variables in the request scope are also available

in the called (sub)templates. An example is shown at lines 77–82. Values extracted from

the input data are stored in variables in the page scope, lines 77–78, otherwise they are

overwritten by the recursively called (sub)template. Since page scoped variables are not

passed to a called (sub)template, they are assigned to a request scoped variable before

calling the (sub)template, see lines 79–82.

b.j.arnoldus@repleo.nl



The Metalanguage 83

p i c o . j s p :
2 <%@ page l a n g u a g e =” j a v a ” c o n t e n t T y p e =” t e x t / p l a i n”%>
<%@ t a g l i b p r e f i x =” c ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / c o r e ” %>

4 <%@ t a g l i b p r e f i x =”x ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / xml ” %>
<%@ t a g l i b p r e f i x =” fn ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / f u n c t i o n s ” %>

6 <c : i m p o r t u r l =” i n p u t . xml ” v a r =” u r l ” />
<x : p a r s e xml =”${ u r l }” v a r =” i n p u t ” />

8 b e g i n
d e c l a r e

10 <x : f o r E a c h v a r =” d e c l ” v a r S t a t u s =” s t a t u s ”
s e l e c t =” $ i n p u t / program / d e c l s / l i s t / d e c l ”>

12 <x : s e t v a r =” i d e n t i f i e r ” s e l e c t =” s t r i n g ( $ d e c l / v a l u e ) ”
scope =” page ”/>${ fn : r e p l a c e ( i d e n t i f i e r , ”\” ” , ” ” ) } :

14 <x : o u t s e l e c t =”name ( $ d e c l / ∗ [ 2 ] ) ” />
<c : i f t e s t =”${ s t a t u s . l a s t == ’ f a l s e ’}” >,</c : i f>

16 </x : fo rEach >;
<x : s e t v a r =” s t a t e m e n t s ” s e l e c t =” $ i n p u t / program / l i s t ”

18 scope =” r e q u e s t ”/>
<j s p : i n c l u d e page =” s t a t e m e n t s . j s p ”/>

20
end

22
s t a t e m e n t s . j s p :

24 <%@ t a g l i b p r e f i x =” c ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / c o r e ” %>
<%@ t a g l i b p r e f i x =”x ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / xml ” %>

26 <%@ t a g l i b p r e f i x =” fn ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / f u n c t i o n s ” %>

28 <x : f o r E a c h v a r =” stm ” v a r S t a t u s =” s t a t u s ” s e l e c t =” $ s t a t e m e n t s /∗”>
<x : choose>

30 <x : when s e l e c t =”name ( $stm )=\” a s s i g n m e n t \”” >
<x : s e t v a r =” i d e n t i f i e r ” s e l e c t =” s t r i n g ( $stm / v a l u e ) ”

32 scope =” page ”/>${ fn : r e p l a c e ( i d e n t i f i e r , ”\” ” , ” ” )}
:= <x : s e t v a r =” exp r ” s e l e c t =” $stm / ∗ [ 2 ] ”

34 scope =” r e q u e s t ”/>< j s p : i n c l u d e page =” exp r . j s p ”/>
</x : when>

36
<x : when s e l e c t =”name ( $stm )=\” w h i l e\””>

38 w h i l e <x : s e t v a r =” exp r ” s e l e c t =” $stm / ∗ [ 1 ] ”
scope =” r e q u e s t ”/>< j s p : i n c l u d e page =” expr . j s p ”/> do

40 <x : s e t v a r =” s t a t e m e n t s ” s e l e c t =” $stm / ∗ [ 2 ] ”
scope =” r e q u e s t ”/>

42 <j s p : i n c l u d e page =” s t a t e m e n t s . j s p ”/>
od

44 </x : when>
<x : when s e l e c t =”name ( $stm )=\” i f \””>

46 i f <x : s e t v a r =” exp r ” s e l e c t =” $stm / ∗ [ 1 ] ” scope =” r e q u e s t ”/>
<j s p : i n c l u d e page =” expr . j s p ”/> t h e n

48 <x : s e t v a r =” s t a t e m e n t s 1 ” s e l e c t =” $stm / ∗ [ 2 ] ”
scope =” page”/><x : s e t v a r =” s t a t e m e n t s 2 ”

50 s e l e c t =” $stm / ∗ [ 3 ] ” scope =” page ”/>

Fig. 4.11 PICO abstract syntax tree unparser in JSP.(to be continued)
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<c : s e t v a r =” s t a t e m e n t s ” v a l u e =”${ s t a t e m e n t s 1 }”
52 scope =” r e q u e s t ” />

<j s p : i n c l u d e page =” s t a t e m e n t s . j s p ”/>
54 e l s e <c : s e t v a r =” s t a t e m e n t s ” v a l u e =”${ s t a t e m e n t s 2 }”

scope =” r e q u e s t ” />
56 <j s p : i n c l u d e page =” s t a t e m e n t s . j s p ”/> f i

</x : when>
58 </x : choose> <c : i f t e s t =”${ s t a t u s . l a s t == ’ f a l s e ’}” >;</c : i f>

</x : fo rEach>
60

exp r . j s p :
62 <%@ t a g l i b p r e f i x =” c ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / c o r e ” %>

<%@ t a g l i b p r e f i x =”x ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / xml ” %>
64 <%@ t a g l i b p r e f i x =” fn ” u r i =” h t t p : / / j a v a . sun . com / j s p / j s t l / f u n c t i o n s ” %>

<x : choose>
66 <x : when s e l e c t =”name ( $expr )=\” n a t c o n \”” >

<x : o u t s e l e c t =” $expr /∗ [ 1 ] ” / >
68 </x : when>

<x : when s e l e c t =”name ( $expr )=\” s t r c o n \”” >
70 <x : o u t s e l e c t =” $expr /∗ [ 1 ] ” / >

</x : when>
72 <x : when s e l e c t =”name ( $expr )=\” i d \”” >

<x : s e t v a r =” i d e n t i f i e r ” s e l e c t =” s t r i n g ( $expr / ∗ [ 1 ] ) ”
74 scope =” page ”/> ${ fn : r e p l a c e ( i d e n t i f i e r , ”\” ” , ” ” )}

</x : when>
76 <x : when s e l e c t =”name ( $expr )=\” sub \”” >

<x : s e t v a r =” e x p r l ” s e l e c t =” $expr / ∗ [ 1 ] ” scope =” page ”/>
78 <x : s e t v a r =” e x p r r ” s e l e c t =” $expr / ∗ [ 2 ] ” scope =” page ”/>

<c : s e t v a r =” exp r ” v a l u e =”${ e x p r l }” scope =” r e q u e s t ” />
80 <j s p : i n c l u d e page =” exp r . j s p ”/> − <c : s e t v a r =” exp r ”

v a l u e =”${ e x p r r }” scope =” r e q u e s t ” />
82 <j s p : i n c l u d e page =” exp r . j s p ”/>

</x : when>
84 <x : when s e l e c t =”name ( $expr )=\” c o n c a t \”” >

<x : s e t v a r =” e x p r l ” s e l e c t =” $expr / ∗ [ 1 ] ” scope =” page ”/>
86 <x : s e t v a r =” e x p r r ” s e l e c t =” $expr / ∗ [ 2 ] ” scope =” page ”/>

<c : s e t v a r =” exp r ” v a l u e =”${ e x p r l }” scope =” r e q u e s t ” />
88 <j s p : i n c l u d e page =” exp r . j s p ”/> | | <c : s e t v a r =” exp r ”

v a l u e =”${ e x p r r }” scope =” r e q u e s t ” />
90 <j s p : i n c l u d e page =” exp r . j s p ”/>

</x : when>
92 <x : when s e l e c t =”name ( $expr )=\” add \”” >

<x : s e t v a r =” e x p r l ” s e l e c t =” $expr / ∗ [ 1 ] ” scope =” page ”/>
94 <x : s e t v a r =” e x p r r ” s e l e c t =” $expr / ∗ [ 2 ] ” scope =” page ”/>

<c : s e t v a r =” exp r ” v a l u e =”${ e x p r l }” scope =” r e q u e s t ” />
96 <j s p : i n c l u d e page =” exp r . j s p ”/> + <c : s e t v a r =” exp r ”

v a l u e =”${ e x p r r }” scope =” r e q u e s t ” />
98 <j s p : i n c l u d e page =” exp r . j s p ”/>

</x : when>
100 </x : choose>

Fig. 4.12 PICO abstract syntax tree unparser in JSP.(continued)
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4.4.3 Velocity

Velocity6 is a template evaluator for Java. It provides a basic template metalanguage to

reference Java objects, called Velocity Template Language. Velocity is text-based and has

no assumptions on the language it generates. The aim of Velocity is to separate the presen-

tation tier and the business tier, according to the model-view-controller (MVC) architecture

in web applications. The metalanguage of Velocity supports complex computations, since

it is possible to assign variables and write expressions. An example of a Velocity template

is already discussed in Section 1.3.4.

The Velocity Template Language (VTL) has two core notations: object references written

as a $ followed by its variable name, and statements starting with a # followed by the

instruction. The object references can be directly used in the object code, similar to the

substitution placeholder, or as variables in the statements. The VTL statements are shown

in Table 4.5.

6http://velocity.apache.org (accessed on December 18, 2011)
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Table 4.5 VTL Statements.

Statement Description

#set Assigns a value to a variable.

#if( Expression )... Selects a text based on the result of the

expression.

#elseif( Expression )

...#else...#end

#foreach( Expression )...#end Iterates over a list returned by the

expression and instantiates the text for

each element in the list.

#literal()...#end Disables the evaluator for a section.

#include( filename ) Includes the file named filename without

interpretation of metacode.

#parse( filename) Includes the file named filename with

interpretation of metacode.

#stop Stops the evaluator.

#evaluate Evaluates a string containing metacode.

#define Assigns a block of VTL to a reference.

#macro Defines a repeated segment of a VTL

template.

The Velocity PICO unparser is shown in Figure 4.13. Velocity provides internal handling

of XML data, which enables a compact definition of the unparser. The difference between

the Velocity PICO unparser and the implementation based on the unparser-complete meta-

language is the use of the foreach statement and if.

Velocity has the same problem with the variable scopes as JSP. As a consequence tempo-

rary variables are necessary when a subtemplate is recursively called multiple times, for

example at lines 45–46.
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b e g i n
2 d e c l a r e

# f o r e a c h ( $ d e c l i n
4 $ r o o t . g e t R o o t E l e m e n t ( ) . g e t C h i l d ( ” d e c l s ” )

. g e t C h i l d ( ” l i s t ” ) . g e t C h i l d r e n ( ) )
6 $ d e c l . g e t C h i l d ( ” v a l u e ” ) . g e t T e x t ( ) . r e p l a c e ( ’ ” ’ , ’ ’ ) :

$ d e c l . g e t C h i l d r e n ( ) . g e t ( 1 ) . getName ( )
8 # i f ( $ v e l o c i t y H a s N e x t ) , # end

# end ;
10 # s e t ( $ s t a t e m e n t s = $ r o o t . g e t R o o t E l e m e n t ( ) . g e t C h i l d ( ” l i s t ” ) )

# s t a t e m e n t s ( $ s t a t e m e n t s )
12 end

14 # macro ( s t a t e m e n t s $ s t a t e m e n t s )
# f o r e a c h ( $stm i n $ s t a t e m e n t s . g e t C h i l d r e n ( ) )

16 # i f ( $stm . getName ( ) == ” a s s i g n m e n t ” )
$stm . g e t C h i l d ( ” v a l u e ” ) . g e t T e x t ( ) . r e p l a c e ( ’ ” ’ , ’ ’ ) :=

18 # s e t ( $expr = $stm . g e t C h i l d r e n ( ) . g e t ( 1 ) )# exp r ( $expr )
# e l s e i f ( $stm . getName ( ) == ” w h i l e ” )

20 w h i l e # s e t ( $expr = $stm . g e t C h i l d r e n ( ) . g e t ( 0 ) )
# ex p r ( $expr ) do # s e t ( $ s t a t e m e n t s =

22 $stm . g e t C h i l d r e n ( ) . g e t ( 1 ) ) # s t a t e m e n t s ( $ s t a t e m e n t s )
od

24 # e l s e i f ( $stm . getName ( ) == ” i f ” )
# s e t ( $s tms1 = $stm . g e t C h i l d r e n ( ) . g e t ( 1 ) )

26 # s e t ( $s tms2 = $stm . g e t C h i l d r e n ( ) . g e t ( 2 ) )
i f # s e t ( $expr = $stm . g e t C h i l d r e n ( ) . g e t ( 0 ) )

28 # expr ( $expr ) t h e n
# s e t ( $ s t a t e m e n t s = $s tms1 )# s t a t e m e n t s ( $ s t a t e m e n t s )

30 e l s e
# s e t ( $ s t a t e m e n t s = $s tms2 )# s t a t e m e n t s ( $ s t a t e m e n t s )

32 f i
# end

34 # i f ( $ v e l o c i t y H a s N e x t ) ; # end
# end

36 # end

Fig. 4.13 PICO abstract syntax tree unparser in Velocity.(to be continued)
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# macro ( ex p r $expr )
38 # i f ( $expr . getName ( ) == ” n a t c o n ” )

$expr . g e t V a l u e ( )
40 # e l s e i f ( $expr . getName ( ) == ” s t r c o n ” )

$expr . g e t V a l u e ( )
42 # e l s e i f ( $expr . getName ( ) == ” i d ” )

$expr . g e t V a l u e ( ) . r e p l a c e ( ’ ” ’ , ’ ’ )
44 # e l s e i f ( $expr . getName ( ) == ” sub ” )

# s e t ( $ e x p r l = $expr . g e t C h i l d r e n ( ) . g e t ( 0 ) )
46 # s e t ( $ e x p r r = $expr . g e t C h i l d r e n ( ) . g e t ( 1 ) )

# ex p r ( $ e x p r l )−# exp r ( $ e x p r r )
48 # e l s e i f ( $expr . getName ( ) == ” c o n c a t ” )

# s e t ( $ e x p r l = $expr . g e t C h i l d r e n ( ) . g e t ( 0 ) )
50 # s e t ( $ e x p r r = $expr . g e t C h i l d r e n ( ) . g e t ( 1 ) )

# ex p r ( $ e x p r l ) | | # exp r ( $ e x p r r )
52 # e l s e i f ( $expr . getName ( ) == ” add ” )

# s e t ( $ e x p r l = $expr . g e t C h i l d r e n ( ) . g e t ( 0 ) )
54 # s e t ( $ e x p r r = $expr . g e t C h i l d r e n ( ) . g e t ( 1 ) )

# ex p r ( $ e x p r l )+# exp r ( $ e x p r r )
56 # end

# end

Fig. 4.14 PICO abstract syntax tree unparser in Velocity.(continued)

4.4.4 StringTemplate

StringTemplate is a text-template system designed to enforce strict separation of model and

view in a model-view-controller architecture. The developers of StringTemplate have de-

signed the metalanguage using an evolution process starting from a simple “document with

holes” to a sophisticated template evaluator. This separation of model and view is achieved

by enforcing that the view cannot modify the model or perform calculations based on data

from the model. Therefore, in comparison to JSP or ERb, the design of StringTemplate

is optimized for enforcement of separation, not for Turing-completeness, nor amazingly-

expressive “one-liners” [Parr (2004)].

This limited metalanguage enforces a template developer to exclude any calculations in the

template and enforces to only consider the output code. It supports attribute references,

subtemplates, implicit for-loops and if constructs. The authors of StringTemplate dis-

tilled four important metalanguage constructs, shown in Table 4.6.
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Table 4.6 StringTemplate statements.
Statement Description

$attribute$ Attribute references. For example: $user.name$.

$if(attribute)$subtemplate Conditional template inclusion. For example:

$else$subtemplate2$endif$ $if(attr)$<title>$attr$</title>$endif$.

$template(argument-list)$ (Recursive) template references.
For example: $item()$.

attribute:{anonymous-template} Template application to a multi-valued attributes,
i.e. iteration. For example:
$users:{<tr><td>$it.name$</td><td>
$it.age$</td></tr>}.

This set of constructs is, in their experience, powerful enough to specify templates for

complex dynamic websites. They discovered a similarity between templates and grammars.

The analogy with grammars is that (sub)templates are production rules and the attribute

references are the terminals. The result of this observation is that the explicit for-loop

construction is not necessary to generate lists. Instead of a for-loop, a kind of regular

expression notation can be used, like $names:item()$, where the subtemplate item() is

invoked for every element of the list names. Although the notation is shorter, the behavior

is equal to an iteration placeholder.

Figure 4.15 shows the PICO unparser specified in StringTemplate. The compact notation

for the iterator results in a compact definition of the unparser. The PICO unparser based

on StringTemplate has the fewest lines of code compared to the other unparser specifi-

cations. The handling of the input data in StringTemplate is not as flexible as the other

systems. StringTemplate uses a Java Map structure as input data, which is instantiated via

a JavaScript Object Notation tree (JSON) [Crockford (2008)]7 of the input abstract syntax

tree. JSON trees differ from the trees used in this book. JSON nodes are a representation

of JavaScript objects with fields, such fields do not have an index and are only accessible

via their labels. Fortunately, JSON supports ordered lists and as a workaround the ordered

trees are emulated by pushing the children of a node into a list. Consider an ATerm of the

form f (t1, . . . , tr), which is translated to a JSON node of the form {“ f ” : [t1, . . . , tr]}, where

the branches are stored in an ordered list, which can be queried using the location of an

element. When ti is a list, the translation will result in a nesting of listings, which cannot

be queried by the mechanism of StringTemplate. Therefore, an ATerm ti is translated to

{“list” : ti}, when ti is a list. Alternatively index labels could be used for the branches, for
7http://www.json.org (accessed on December 18, 2011)
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example f (t1, . . . , tr) to {“ f ” : {“one” : t1}, . . . ,{“r” : tr}}. The last translation is mapping

the keyword if in the abstract syntax tree to when, since if is a keyword in StringTemplate

and thus not allowed as label reference.

StringTemplate is not able to select an element in a list based on its position, but only pro-

vides standard list functions first, last and rest, where first returns the first element,

last the last element of the list and rest the original list without the first element. The

first and last functions are used to directly request an element of the list when possible,

for the other arguments the rest function is used to obtain them. If the element at index

k, where k > 1, is needed, the rest function is applied k− 1 times and the first element

of the last rest call is fetched: first(rest( ... rest( list ) ... )). Line 23 of

Figure 4.15 shows this approach.

4.4.5 Evaluation

The PICO unparser is implemented in ERb, JSP, Velocity and StringTemplate. The notable

differences and similarities are summarized in this section.

StringTemplate and the unparser-complete metalanguage do not allow manipulation of

data, and as a result calculations cannot be expressed. The metalanguages of the industrial

approaches, ERb, JSP and Velocity, are Turing-complete. A Turing-complete metalan-

guage allows manipulating of data and storing of data. This is unnecessary to implement

an unparser and can only lead to undesired programming in templates. Programming in

templates can result in undesired tangling of concerns [Hunter (2000)].

Although the metalanguages of the three industrial approaches are Turing-complete, these

systems share the same problem. They support recursion, but the assigned metavariables

are by default globally available instead of scoped for the block where they are defined.

Some workarounds are used to enable block scoping of metavariables, but it introduced

undesired boilerplate code. In case of JSP and ERb an explicit stack mechanism for the

metavariables must be defined. In case of Velocity helper metavariables is used to prevent

updates of metavariables from an inner scope.

The PICO unparser based on StringTemplate has the fewest lines of code. StringTemplate

provides a block scoping mechanism making explicit definition of a stack unnecessary.

However, in comparison to the unparser-complete metalanguage, StringTemplate has the

limitation that it can only handle unordered trees. An extra transformation is necessary to

convert the input data from an ordered tree to an unordered tree.

b.j.arnoldus@repleo.nl



The Metalanguage 91

1 p i c o u n p a r s e r . s t :
b e g i n

3 d e c l a r e
$ f i r s t ( program ) . d e c l s : d e c l ( ) ; s e p a r a t o r =” ,” $ ;

5 $ l a s t ( program ) . l i s t : s t a t e m e n t s ( ) ; s e p a r a t o r = ” ; ” $
end

7
d e c l . s t :

9 $ f i r s t ( i t . d e c l ) . v a l u e $ : $ l a s t ( i t . d e c l ) . keys$

11 s t a t e m e n t s . s t :
$ i f ( i t . a s s i g n m e n t ) $

13
$ f i r s t ( i t . a s s i g n m e n t ) . v a l u e $ :=

15 $expr ( exp r = l a s t ( i t . a s s i g n m e n t ) ) $
$ e l s e i f ( i t . w h i l e ) $

17
w h i l e $expr ( e xp r = f i r s t ( i t . w h i l e ) ) $ do

19 $ l a s t ( i t . w h i l e ) . l i s t : s t a t e m e n t s ( ) ; s e p a r a t o r = ” ; ” $
od

21 $ e l s e $
i f $expr ( exp r = f i r s t ( i t . when ) ) $ t h e n

23 $ f i r s t ( r e s t ( i t . when ) ) . l i s t : s t a t e m e n t s ( ) ; s e p a r a t o r = ” ; ” $
e l s e

25 $ l a s t ( i t . when ) . l i s t : s t a t e m e n t s ( ) ; s e p a r a t o r = ” ; ” $
f i

27 $ e n d i f $

29 exp r . s t :
$ i f ( e x p r . n a t c o n ) $

31 $expr . n a t c o n $
$ e l s e i f ( exp r . s t r c o n ) $

33 ” $expr . s t r c o n $ ”
$ e l s e i f ( exp r . i d ) $

35 $expr . i d $
$ e l s e i f ( exp r . sub ) $

37 $expr ( exp r = f i r s t ( exp r . sub ) ) $−$expr ( exp r = l a s t ( e xp r . sub ) ) $
$ e l s e i f ( exp r . c o n c a t ) $

39 $expr ( exp r = f i r s t ( exp r . c o n c a t ) ) $ | | $expr ( exp r = l a s t ( exp r . c o n c a t ) ) $
$ e l s e i f ( exp r . add ) $

41 $expr ( exp r = f i r s t ( exp r . add ) ) $+ $expr ( exp r = l a s t ( e xp r . add ) ) $
$ e n d i f $

Fig. 4.15 PICO abstract syntax tree unparser in StringTemplate.

Besides the metalanguage, the (implicit) behavior of the template evaluator is important.

Some versions of ERb print text to the output at spurious moments instead of building a

string and returning it at the end of the evaluation. This is not a problem when having

a single template, but with the recursively called subtemplates, the output characters are
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printed in the wrong order. Subtemplates must be first evaluated and the resulting string

must be inserted in the calling template and not directly be sent to the output stream.

4.5 Conclusions

In this chapter an unparser-complete metalanguage is defined. This metalanguage is based

on the linear deterministic top-down tree-to-string transducer. Five constructs are provided:

subtemplates, match-replace placeholder, substitution placeholder, iteration placeholder

and conditional placeholder. This metalanguage is unparser-complete as it supports match-

replace placeholders and subtemplates, including recursive template evaluation. The sub-

stitution placeholder, iteration placeholder and conditional placeholder are abbreviations

for combinations of subtemplates and match-replace placeholders. This metalanguage can-

not change the input data to enforce separation of model and view.

Implementations of unparsers for the PICO language are discussed to compare the

unparser-complete metalanguage with the metalanguages of ERb, Velocity, JSP and String-

Template. The unparser implemented using StringTemplate has the fewest lines of code,

but in contrast with the unparser-complete metalanguage, StringTemplate cannot directly

accept all regular trees without a translation function. The metalanguages of ERb, Veloc-

ity, JSP are Turing-complete. Increased expression power of a metalanguage increases the

chance of undesired programming in templates. Programming in templates may result in

tangling of concerns. Although these industrial approaches provide a Turing-complete

metalanguage they do not have a block scoping mechanism for the metavariables. A

workaround for proper handling of metavariable scopes was necessary to implement the

PICO unparser.
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Chapter 5

Syntax-Safe Templates

Writing templates, and code generators in general, is a complex and error prone task. This

complexity1 mainly results from mixing multiple languages in a template, executed at dif-

ferent stages, and the incompleteness of the object code. Manual verification of incomplete

object code is hard to do and computers cannot execute incomplete code.

Text-based template evaluators do not improve the situation, as they are not able to check

the object code. They are only aware of the syntax of the metalanguage, while the object

language is considered as a string without any required structure. These evaluators only

process and check the metacode and do not deal with the correctness of the rest of the

template. Ignorance of the correctness of the object code can lead to undetected syntax

errors [Sheard (2001)]. Misspellings in the object code, such as missing semicolons, are

easily made and in such case text-based template evaluators generate syntactically incorrect

code without giving a warning.

A test approach based on generating all possible outputs followed by verifying the result

using a compiler or interpreter seems a valid route. However, to guarantee that a tem-

plate generates syntactically correct sentences during production use, a possibly exploding

amount of input data test cases must be defined for every template. Furthermore, an error

must be manually traced back to its origin, which is not always obvious, such as sometimes

experienced when using the C preprocessor [Ernst et al. (2002)], where the compiler error

messages point to the post-processed code instead of the original source code. Checking

the template directly offers accurate error messages, pointing to the origin of the error.

Beside the problems during development, dynamic text-based code generation as used in

web applications can result in serious security issues, like malicious code injection. An

example of malicious code injection is discussed in Chapter 7.

1The complexity here considered is complexity in the broadest sense of the word and not for example computa-
tional complexity.
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In order to remove the possibility of syntax errors in the generated code, the notion of

syntax-safety for templates is introduced in this chapter [Arnoldus et al. (2007)]. Syntax-

safety is a property of a code generator, where for every possible input the output of a

syntax-safe code generator can be recognized by a parser for the intended resulting lan-

guage, i.e. the code generator produces output sentences of the language L (Gintended). The

intended language is the language for which the code generator should produce sentences,

for example, Java or C.

This chapter presents an approach based on constructing a grammar for templates contain-

ing the definition of the metalanguage and the object language of a template. The construc-

tion of a template grammar is generic and based on the combination of the metalanguage

grammar and the (off-the-shelf) object language grammar, where only a combination gram-

mar connecting both has to be defined manually.

The benefit of a template grammar is that not only the output code is syntactically cor-

rect, but also syntax errors are found in the template itself. Having a template grammar

enables parsing the complete template, which ensures that all (sub)sentences are syntac-

tically correct, without the need of compiling or interpreting generated code. Hence, this

approach helps to avoid syntax errors, both in the metacode and in the object code, before

the template is used for generating code.

Figure 5.1 shows the architecture used for syntax-safe template evaluation. The first stage

is parsing the template using a template grammar resulting in a parse tree of the template.

The second stage is the evaluation of templates. The evaluator uses the parsed template and

input data as input and generates the output code. A syntax-safe template evaluator called

Repleo is implemented. Repleo is a generic syntax-safe template evaluator system param-

eterized with the object language grammar to ensure the output is syntactically correct.

The metalanguage of Repleo is unparser-complete, as discussed in the previous chapters.

Chapter 6 discusses this evaluator.

5.1 Syntax-Safe Templates

During the discussion of the metalanguage for templates in Chapter 4, the object lan-

guage of templates was ignored. The object language was considered as strings, i.e. se-

quences of alphabet symbols. Considering the object language as strings does not guaran-

tee that the output sentences are well-formed with respect to their intended output language

L (Gintended). This section will discuss the requirements to ensure that a template cannot

produce sentences that are not in L (Gintended).
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Fig. 5.1 Syntax-safe evaluation architecture.

In a template the following languages are involved: L (Gobject), L (Gmeta), L (Gtemplate)

and L (Goutput). The sentences and structure of the template directly copied to the out-

put sentence of the evaluator, i.e. the object code, are defined by the object language

L (Gobject). The placeholders in the template are sentences of the (context-free) meta-

language L (Gmeta) and they are interpreted by the template evaluator and not propagated

to the output sentence. The template is a sentence of L (Gtemplate), which is based on the

union of the grammars of Gobject, Gmeta and production rules connecting both. The sen-

tences produced by a template form the output language L (Goutput).

For example, given the template <: $x :>b<: $y :>, where $x and $y are metavariables

bound to $x = a respectively $y = c. Evaluating this template results in the sentence abc.

Considering the different languages, the following statements must hold for the grammars

describing this template:

• abc is a sentence of L (Goutput);

• <: $x :> and <: $y :> are sentences of L (Gmeta);

• b and n1n2n3, where n1, n2 and n3 are nonterminals, are sentences of L (Gobject).

n1n2n3 represents the structure defined by the object language grammar. The concrete

implementation of grammar Gobject is undefined as long as it produces a language with

a sentence of the form n1n2n3. Furthermore, since the template contains a b on the

place of n2 the language L (n2) must at least contain the sentence b;

• <: $x :>b<: $y :> is a sentence of L (Gtemplate).

L (Gobject), L (Gmeta), L (Gtemplate) and L (Goutput) were discussed from a descriptive

point of view. Since the goal is syntax-safe templates, these languages will be discussed

from a declarative point of view, where the languages describe the allowed sentences. First
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a new language L (Gintended) is introduced. This language is the intended output lan-

guage of a code generator, where L (Gintended) should be a context-free (programming)

language. It is undesirable that a metaprogram can produce sentences, which are not part

of L (Gintended); a metaprogram should be syntax-safe.

Definition 5.1.1 (Syntax-safety). A metaprogram p is called syntax-safe with respect to

the intended language L (Gintended) if p, independent of its input, always generates a sen-

tence s which is a sentence of the intended language L (Gintended). In other words program

p is syntax-safe if L (Goutput)⊆L (Gintended).

Syntax-safe template evaluation involves the construction of a Gtemplate describing the tem-

plates, which always result in generation of a sentence in L (Gintended). A template is a

sentence of L (Gtemplate), which is based on a combination of the grammars Gobject and

Gmeta. The next lemma shows that L (Gobject) is at least equal to L (Goutput).

Lemma 5.1.1. The output language of a template L (Goutput) is a superset of the object

language L (Gobject).

Proof. Given a template template[s] without placeholders, then s ∈L (Gobject). The object

code is copied to the output of the template evaluator start(s,ε)⇒ s, so s must be a sentence

of the language L (Goutput). So all sentences of L (Gobject) must be in L (Goutput). Beside

the templates without placeholders, the template may contain placeholders. Placeholders

can be substituted by any sentence, which does not have to be specified by the object

language, as a result L (Goutput)⊇L (Gobject).

In case of a text-based template environment L (Gobject) is defined as all possible sentences

using an alphabet (most times the set of ASCII characters) minus the syntax defined by

L (Gmeta). Considering the example <: $x :>b<: $y :>, the placeholders <: $x :>

and <: $y :> are not defined by the object language, otherwise the template evaluator

cannot make a distinction between metacode and object code. The L (Gobject) used in

text-based templates has no restrictions, since it is only defined as a sequence of alphabet

symbols. The result is that the output language L (Goutput) of text-based templates is of-

ten a superset of the intended output language L (Gintended). This L (Gobject) enables the

template evaluator to generate a sentence that is not in the set of sentences produced by

L (Gintended) and thus can result in generating code containing syntax errors. For example

in case of generating code for the PICO language, it is possible in a text-based template
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environment to generate an identifier starting with a number, which is not allowed by the

PICO language.

In order to satisfy the requirements for syntax-safety, it is necessary to ensure that the

object code in a template exist of (sub)sentences of L (Gintended) and that the metacode is

replaced by (sub)sentences of L (Gintended). The approach to guarantee that placeholders

are substituted by (sub)sentences of L (Gintended) is discussed in Chapter 6.

In order to ensure the object code of a template is a (sub)sentence of Gintended, a template

grammar Gtemplate is constructed defining all valid templates for L (Gintended). The Gobject

part of Gtemplate should be equal to Gintended and the start symbol of Gtemplate should also

be equal to the start symbol of Gintended. Indeed, L (Gtemplate) should also contain the

sentences without placeholders, i.e. sentences of L (Gintended).

Merging both grammars is not sufficient, as a connection between both grammars must be

made. Otherwise the sentences of the metalanguage are not allowed as sub sentences of

the object language. A context-free language can be extended by adding new alternatives

for nonterminals. When a template contains placeholders, Gobject should be extended with

the placeholder syntax of Gmeta resulting in a Gtemplate in such way that the template is a

sentence of that instantiated Gtemplate.

The placeholder syntax defined in Gmeta is added as an alternative for nonterminals

of Gobject in Gtemplate. Hence, the placeholders in syntax-safe templates can only re-

place context-free parts, as it cannot cover multiple nonterminals. For example, in

a text-based template it is possible to write the PICO template BEG<: id() :>ND,

while in a template based on a context-free grammar it is only possible to write

BEGIN <: id() :> a := 1 END. In the first case the placeholder overlaps multiple

(non)terminal symbols, while in the second case the placeholder can be parsed as the non-

terminal DECLS. The next theorem shows that a Gtemplate can be constructed ensuring that

the object code and its output language is a (sub)sentence of L (Gintended).

Theorem 5.1.1. For every L (Gintended) a template grammar Gtemplate containing place-

holder syntax can be constructed, which ensures that the object code is a (sub)sentence of

that L (Gintended).

Proof. Given a template tmp = template[s], evaluating this template results in the output

sentence start(tmp,ε)⇒ s. The template is syntax-safe if s ∈L (Gintended), i.e. parsing s

using Gintended should return a parse tree. So Gtemplate must define a language, which is a

subset or equal to the language of Gintended, otherwise it is possible to generate a sentence s
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not in L (Gintended).

A template can contain placeholders. They are not part of the syntax of the object language.

In order to ensure syntax-safety, under a strict condition Gtemplate may be extended with the

syntax of the placeholders. This condition states that all additional placeholder syntax

is replaced by valid (sub)sentences of Gintended during evaluation of the template. The

metalanguage has two kernel placeholders: the subtemplate call placeholder and the match-

replace placeholder. For both placeholder, extending nonterminals in Gtemplate is syntax-

safe.

Assume that Gtemplate contains an object language production rule of the form S → n1n2,

where S is the start symbol and n1 and n2 are nonterminals. Consider the templates tmps:

template[

<: n1() :> s2

]

n1[

s1

]

where s1 and s2 may recursively contain placeholders. The evaluation

start(tmps, t)⇒ s

is syntax-safe, when for every input data (sub)tree t accepted by the template the out-

put s ∈ L (Gintended). That is, when <: n1() :> replaces itself by sentence of L (n1)

and s2 ∈ L (n2). Subtemplate n1 must produce a sentence of L (n1) to ensure that

<: n1() :> replaces itself by sentence of L (n1), which means that the production rule

TMPS→ “n1[”n1“]” is in Gtemplate, where TMPS is the nonterminal representing the list of

(sub)templates. Since the subtemplate a produces a sentence of L (n1) it is allowed to add

the production rule

n1 → “ <: n1(”Expr“) :> ”

in Gtemplate, where Expr is the nonterminal for the metalanguage expressions.

Assume that Gtemplate contains object language production rules S→ n1 and S→ n2, where

S is the start symbol and n1 and n2 are nonterminals. Consider the template tmps:

template[

<: match :>

<: mp =:> s1
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<: mp’ =:> s2

<: end :>

]

where s1 and s2 may recursively contain placeholders. For every t accepted by the template,

that is if t matches mp or mp′, the evaluation start(tmps, t)⇒ s is syntax-safe, when s ∈
L (Gintended). The match-replace selects either s1 or s2, which means that both s1 and

s2 must be a sentence of L (Gintended), i.e. a sentence of L (n1) or L (n2). In order to

ensure that the template fulfills this requirement the following productions rules are added

to Gtemplate:

• S→ “ <: match” Expr “ :> ” MatchRuleS+ “ <: end :> ”

• MatchRuleS→ “ <: ” MP “ =:> ” S

where MP is the nonterminal for the match-pattern syntax and Expr for the metalanguage

expression syntax. The suffix S of the MatchRule nonterminal is to specify that only match-

rules containing object code for the nonterminal S are allowed.

A Gtemplate constructed using these rules defines the language of templates resulting in a

syntax-safe template evaluation for Gintended. If a template is a sentence of such a Gtemplate

then its evaluation result is a sentence of L (Gintended), since the applied placeholders are

always replaced by a (sub)sentence valid for the nonterminal where they are applied.

After constructing a Gtemplate it is possible to build a parse tree of a template. A schematic

view of such parse tree of a template is shown in Figure 5.2. Gobject and Gtemplate have

the same start symbol. Black sub-parse trees visualize the placeholders. The Gmeta part of

Gtemplate is used to parse them. A special case is the black part that contains a white subtree.

At that point a placeholder contains a piece of object code, which is used as a pattern to

replace the placeholder, as the case for the match-replace placeholders. The match-replace

starts with a piece of metacode and fragments of object code are defined in the match-rules.

Black and white parts may be arbitrarily nested. This nesting represents recursive nesting

of placeholders, such as a match-replace placeholder applied inside a match-rule of another

match-replace placeholder.

Having a Gtemplate enables the parsing of the entire template. The metalanguage and object

language in a template are parsed simultaneously and misspellings in these languages are

detected during the parsing phase. Syntax errors are found in the entire template. This

helps to find syntax errors in the static part of the template before the template is evaluated,
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Fig. 5.2 Schematic view of a parse tree of a template.

and thus input data is not necessary to detect these errors. A template only based on match-

replace placeholders and subtemplates is already syntax-safe. When the template accepts

the input data tree, it generates a sentence of L (Gintended). An invalid input data tree

will not result in output code, but will result in an error, because it is not accepted by the

template.

5.2 The Metalanguage Grammar

In this section the implementation of template grammars in SDF [Heering et al. (1989)] is

presented. The syntax of the placeholders is based on the metalanguage of Chapter 4. First,

the syntax shared by all metalanguage constructs is discussed. After the shared syntax

is presented, the syntax of the subtemplates, match-replace placeholder and substitution

placeholder is given.

The template grammar is obtained by combining the object language grammar and place-

holder grammar by adding the placeholder syntax as alternative to the object language non-

terminals. SDF offers module parameters to specialize the placeholder syntax for a specific

nonterminal, instead of redefining the placeholder syntax for every nonterminal, as pro-

posed by Theorem 5.1.1. An SDF grammar module may have a number of (non)terminal

parameters, which can be substituted during the import of a module by the actual required

(non)terminal. When the placeholder grammar is added as an alternative for an object lan-

guage nonterminal, this grammar is parameterized with that object language nonterminal

to inject the placeholder syntax as alternative for it. The use of module parameters results

in a compact definition of the grammar Gtemplate. A template grammar is defined by a com-
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bination module importing the placeholder syntax for each object language nonterminal,

which should be extended.

It should be possible to use another syntax formalism. When the grammar formalism does

not support modularization and parameterization, one can choose to instantiate the place-

holder injections using a code generator. The most important feature is that the chosen

parser supports ambiguities as template grammars can be easily become ambiguous. An

ambiguity occurs when a (sub) parse tree of a (sub) sentence can be constructed in multiple

ways using the production rules of a context-free grammar. In the situation of the con-

structed template grammars ambiguities can have two causes: either the object language

grammar itself is already ambiguous or the combination of object language grammar and

metalanguage grammar introduces ambiguities.

5.2.1 Shared Syntax

The syntax definitions of the three placeholders have a number of shared syntax artifacts.

This section discusses the syntax of the hedges, explicit syntactical typing of placeholders

and meta-comment.

5.2.1.1 Hedges

Hedges are syntactical constructs used to indicate the transition between object language

and metalanguage. The hedges make the transition between metacode and object code ex-

plicit, so humans can easily recognize the transistions. In text-template systems hedges

are obligatory to recognize the placeholders. When a template is parsed and both object

language and metalanguage are part of the template grammar, hedges are not longer neces-

sary [Vinju (2006)]. The parser will recognize the placeholders as metacode as it cannot be

parsed as a piece of object code. If the syntax of the metalanguage overlaps with the syntax

of the object language ambiguities can occur. These ambiguities are efficiently eliminated

when hedges are used that are not part of the object language. In the other cases disam-

biguation strategies should be defined in order to filter these ambiguities [Vinju (2006)].

It is essential that the hedges are a sequence of characters disjoint of the syntax of the object

language to prevent ambiguities. Since the hedges are only used during the parsing phase

and have no semantic meaning, the definition can be overridden by an alternative sequence

of characters. The character sequences <: and :> are chosen for aesthetic reasons. These

default hedges are defined in the SDF module of Figure 5.3.

b.j.arnoldus@repleo.nl



102 Code Generation with Templates

5.2.1.2 Syntactical Typing of Placeholders

Template grammars can become ambiguous when placeholders can be parsed as multiple

nonterminals. In Section 6.6 the origin of ambiguities are discussed in detail and a filter to

handle them is presented. However, the use of an ambiguity filter reduces the performance

of the template evaluator. Therefore a syntactical construction “sort:Sort” is included

to force the parser to recognize a placeholder as a specified nonterminal. The Sort is

replaced by the actual name of the nonterminal during parameterization of the placeholder

syntax (see Section 2.6.2 for explanation). This construct can be used to disambiguate a

placeholder when multiple types of placeholders fit on a position. For example, it is used

in Figure 6.8 at line 24 to force that the placeholder <: $stms sort:STATEMENT* :> is

parsed as the nonterminal STATEMENT*.

When multiple object language nonterminals are extended an overlap between the

PlaceHolderType’s will occur. The parameterized nonterminal feature of SDF, supported

by the [[Sort]] syntax, is used to avoid name clashes between different instances of the

same imported placeholder.

5.2.1.3 Meta-comment

The last provided syntactical artifact is meta-comment: <:%% meta-comment :>. Meta-

comment is not copied to the output code and its purpose is documenting template code,

which is not relevant in the generated code. It is an alternative for the LAYOUT sort, which is

a special kind of nonterminal in the SGLR [Visser (1997)] implementation in order to han-

dle layout. The LAYOUT sort represents all symbols, which have no semantic meaning. The

other layout artifacts are one-to-one copied to the output, necessary for output languages

with layout criteria and to generate human readable output code.

5.2.2 Subtemplates

Two syntactical constructions are necessary for subtemplates. First subtemplates must be

declared and identifiable, second a subtemplate call placeholder is necessary to instantiate a

subtemplate. The subtemplate is declared via a label, followed by a fragment of code. The

subtemplate call placeholder consists of a pair of hedges combined with the identifier of the

subtemplate and an expression to provide a new input data context to the subtemplate. Fig-

ure 5.4 shows the grammar definition. The annotation placeholder("subtemplate") is

used by the evaluator, see Chapter 6, to detect the placeholder.

In order to parse a template with subtemplate call placeholders, it is necessary to embed
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module Common[ ” S o r t ” S o r t ]
2

e x p o r t s
4 s o r t s BeginTag EndTag

6 l e x i c a l s y n t a x
”<:” −> BeginTag

8 ”:>” −> EndTag

10 ” s o r t : ” ” S o r t ” −> P l a c e H o l d e r T y p e [ [ S o r t ] ]

12 BeginTag ”%%” l i n e : ˜ [ \ n ]∗ EndTag
−> LAYOUT

Fig. 5.3 Syntax shared by all placeholders.

1 module P l a c e H o l d e r S u b T e m p l a t e [ ” S o r t ” S o r t ]

3 i m p o r t s Common[ ” S o r t ” S o r t ]
i m p o r t s b a s i c / I d e n t i f i e r C o n

5 i m p o r t s E x p r e s s i o n

7 e x p o r t s
s o r t s Templa te

9
c o n t e x t−f r e e s y n t a x

11 IdCon ” [ ” S o r t ” ] ” −> Templa te

13 BeginTag IdCon ” ( ” E x p r e s s i o n ” ) ”
P l a c e H o l d e r T y p e [ [ S o r t ] ] ? EndTag

15 −> S o r t { p l a c e h o l d e r ( ” s u b t e m p l a t e ” )}

Fig. 5.4 Syntax for subtemplates.

the placeholder syntax in the object language. This grammar module defines the place-

holder syntax with the generic result nonterminal Sort. The definition can be added as an

alternative to an arbitrary object language nonterminal. The injection of the placeholder in

the object language is achieved by importing the placeholder grammar, while parameter-

izing this module with an object language nonterminal. During parameterization Sort is

internally replaced by the object language nonterminal, as a result the placeholder syntax

becomes an alternative for that object language nonterminal.

The parameterizing of Sort is compliant with the proposed construction of template gram-

mars in Theorem 5.1.1. The identifier nonterminal used to label the subtemplates gener-
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1 module P l a c e H o l d e r M a t c h R e p l a c e [ ” S o r t ” S o r t ]

3 i m p o r t s Common[ ” S o r t ” S o r t ]
i m p o r t s E x p r e s s i o n

5 i m p o r t s M a t c h P a t t e r n

7 e x p o r t s
s o r t s MatchRule

9 c o n t e x t−f r e e s y n t a x
BeginTag ” match ” E x p r e s s i o n

11 P l a c e H o l d e r T y p e [ [ S o r t ] ] ? EndTag
MatchRule [ [ S o r t ] ] +

13 BeginTag ” end ” EndTag
−> S o r t { p l a c e h o l d e r ( ” m a t c h r e p l a c e ” )}

15
BeginTag M a t c h P a t t e r n ”=” EndTag

17 S o r t
−> MatchRule [ [ S o r t ] ]

Fig. 5.5 Syntax for match-replace placeholder.

alizes from the fixed label in production rules of Theorem 5.1.1. This means the template

evaluator should check whether the called subtemplate result in the correct grammatical

sort. Syntax-safe evaluation is discussed in Chapter 6.

An example of the use of a subtemplate can be found in Figure 6.8. At lines 38-50 the

subtemplate expr is declared. Amongst others, this subtemplate is called at line 23.

5.2.3 Match-Replace

The match-replace placeholder is a construction containing multiple match-rules. Each

match-rule has a fragment of object code accompanied by a tree match-pattern. The match-

replace replaces itself with a fragment of object code defined in the match-rule. This im-

plies that the fragment of object code in a match-rule must be parsed as the same object

language nonterminal as the match-replace substitutes.

The principle of extending the object language is the same as the subtemplate call place-

holder. The match-replace placeholder is also injected as an alternative for an object lan-

guage placeholder. Furthermore, it supports an expression to specify the context for the

match-rules. This expression is evaluated before the match-rules are tried. Figure 5.5

shows the generic match-replace grammar module.

A match-rule contains a MatchPattern and a fragment of resulting object language code.

The MatchPattern is a tree pattern containing possible metavariables. The syntax de-
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module P l a c e H o l d e r S u b s t i t u t i o n [ ” S o r t ” S o r t ]
2

i m p o r t s Common[ ” S o r t ” S o r t ]
4 i m p o r t s E x p r e s s i o n

6 e x p o r t s
c o n t e x t−f r e e s y n t a x

8 BeginTag E x p r e s s i o n P l a c e H o l d e r T y p e [ [ S o r t ] ] ? EndTag
−> S o r t { p l a c e h o l d e r ( ” s u b s t i t u t i o n ” )}

10 ” end ” −> IdCon { r e j e c t }

Fig. 5.6 Syntax for substitution placeholder.

pends on the particular tree representation, i.e. ATerms [van den Brand et al. (2000)]. The

approach is not limited to ATerms and it can be used with another tree syntax like XML or

JSON. The MatchPattern supports metavariables defined as a dollar sign followed by a

label with the character class [A-Za-z][A-Za-z\-0-9]*.

The match-replace syntax definition is compliant with the proposed construction of tem-

plate grammars in Theorem 5.1.1. The result code of a match-rule is of the same syntac-

tical type as the injection of the match-replace, which is visible in the grammar definition.

The MatchRule contains the Sort nonterminal and finally the match-replace is injected

in the Sort nonterminal as alternative. The following chain of productions is recogniz-

able: Sort⇒MatchRule[[Sort]]+⇒ Sort. This structure enforces that all possible results

of match-replace are of the nonterminal Sort, i.e. it is not possible to mix different sorts

in the match-rule set. The MatchRule nonterminal is augmented with the parameterized

name [[Sort]], so that the MatchRule nonterminal is unique for every object nontermi-

nal extended with placeholder syntax.

Multiple examples of the use of the match-replace placeholder can be found in figure 6.8.

For instance at lines 5-14 a match-replace placeholder is used.

5.2.4 Substitution Placeholder

A substitution placeholder consists of a couple of hedges and an expression to obtain the

data to replace it. The syntactical pattern for the substitution placeholder is <: Expr :> or

<: Expr sort:SORT :>, where the capitalized SORT is the nonterminal name. This last

construction is used to force the parser to parse the placeholder as the given syntactical type

to solve ambiguities. A generic syntax definition of the substitution placeholder is given in

Figure 5.6.
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The substitution placeholder is a superfluous construct as it can be expressed using subtem-

plates and match-replace placeholders. There are two reasons to discuss this placeholder.

First, the substitution is an intuitive construct expected when using templates. Second, in a

syntax-safe template evaluator implicit behavior can be added to it, which will be discussed

in Chapter 6. The difference with the previous two discussed metalanguage constructs is

that syntax-safety is not enforced by the grammar, but must be handled by the template

evaluator.

A final note: For aesthetic and readability reasons the keyword end is used as closing

tag of the match-replace placeholder. Since end can be parsed as nonterminal IdCon an

ambiguity may occur on the closing tag of the match-replace placeholder given that it also

can be recognized as a substitution placeholder. The end label is rejected as IdCon in

order to remove the chance of this ambiguity. This reject restricts the use of the word end

as label in the input data. One can choose to replace end with a sequence of characters,

which cannot be parsed as an IdCon in order to remove this restriction.

5.3 Grammar Merging

The template grammar Gtemplate is instantiated by combining the Gobject and Gmeta via im-

porting both grammars in a combination module and describing their connection. In order

to connect the object language and the metalanguage, nonterminals of the Gobject are ex-

tended with an extra alternative to connect the object language nonterminal with the root

nonterminal of the metalanguage.

The presented placeholder syntax definitions are independent of the object language gram-

mar. In order to inject the placeholder syntax in the object language grammar, the place-

holder grammar modules are imported in the combination module and at the same time

parameterized with a nonterminal of the object language grammar. At the moment that the

placeholders are imported and parameterized with a nonterminal of the object language, the

placeholder is injected as an alternative for that nonterminal. Since all three placeholder

constructs are simultaneously applied to a nonterminal, the three previously defined place-

holder modules are combined in a single module called PlaceHolder, which is shown in

Figure 5.7. A small note must be made on the parameterization arguments: "Sort" must

be the literal name of the Sort and is used as a keyword to fix the sort of substitution

placeholders syntactically, since SDF has no syntax to do this automatically.

The last grammar module StartSymbol, shown in Figure 5.8, is of a more operational
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module P l a c e H o l d e r [ ” S o r t ” S o r t ]
2

i m p o r t s P l a c e H o l d e r S u b s t i t u t i o n [ ” S o r t ” S o r t ]
4 i m p o r t s P l a c e H o l d e r S u b T e m p l a t e [ ” S o r t ” S o r t ]

i m p o r t s P l a c e H o l d e r M a t c h R e p l a c e [ ” S o r t ” S o r t ]

Fig. 5.7 Combination of all placeholders to a single module.

1 module S t a r t S y m b o l [ ” S o r t ” S o r t ]

3 i m p o r t s b a s i c / I d e n t i f i e r C o n
i m p o r t s u t i l i t i e s / f i l e I O / D i r e c t o r y

5 i m p o r t s P l a c e H o l d e r S u b s t i t u t i o n [ ” F i l ename ” Fi l ename ]
i m p o r t s P l a c e H o l d e r S u b s t i t u t i o n [ ” S u b D i r e c t o r y ” S u b D i r e c t o r y ]

7 i m p o r t s P l a c e H o l d e r [ ” Templa te ∗” Templa te ∗ ]

9 e x p o r t s
c o n t e x t−f r e e s t a r t −symbols

11 T e m p l a t e S e t

13 s o r t s Templa te

15 c o n t e x t−f r e e s y n t a x
” [ ” Templa te∗ ” ] ” −> T e m p l a t e S e t

17 ” t e m p l a t e ” ” [ ” F i l e ” , ” S o r t ” ] ” −> Templa te
” t e m p l a t e ” ” [ ” S o r t ” ] ” −> Templa te

19 ” t e m p l a t e ” −> IdCon { r e j e c t }

Fig. 5.8 Start symbol module.

nature. It defines a start symbol TemplateSet representing a list of (sub)templates. The

template with the identifier template is the starting point of the evaluator and it contains

object code for Sort, which is most likely equal to the start symbol of the object language.

This start template may be accompanied by a file name to instantiate a file containing the

generated code. File handling is necessary for using templates in the case studies of Chap-

ter 7. The nonterminals Filename and SubDirectory belonging to the nonterminal File

are extended with placeholders to enable parameterization. The Template* nonterminal is

also extended with placeholder syntax to enable iteration.

All ingredients for the combination module to instantiate a template grammar are defined.

The combination module is the only object language specific part of the Gtemplate definition.

It imports the object language, it instantiates the StartSymbol module and it defines which

nonterminals of the object language are injected with placeholder syntax.
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1 module Template−Pico

3 i m p o r t s P i co

5 i m p o r t s S t a r t S y m b o l [ ”PROGRAM∗” PROGRAM∗ ]
i m p o r t s P l a c e H o l d e r [ ” NatCon ” NatCon ]

7 i m p o r t s P l a c e H o l d e r [ ” St rCon ” StrCon ]
i m p o r t s P l a c e H o l d e r [ ”TYPE” TYPE]

9 i m p o r t s P l a c e H o l d e r [ ” PICO−ID ” PICO−ID ]
i m p o r t s P l a c e H o l d e r [ ”EXP” EXP]

11 i m p o r t s P l a c e H o l d e r [ ”STATEMENT” STATEMENT]
i m p o r t s P l a c e H o l d e r [ ” ID−TYPE” ID−TYPE]

13 i m p o r t s P l a c e H o l d e r [ ”DECLS” DECLS]
i m p o r t s P l a c e H o l d e r [ ”PROGRAM” PROGRAM]

15 i m p o r t s P l a c e H o l d e r [ ”STATEMENT∗” {STATEMENT ” ; ” }∗ ]
i m p o r t s P l a c e H o l d e r [ ” ID−TYPE∗” {ID−TYPE ” , ” }∗ ]

Fig. 5.9 PICO combination module.

A side effect of the injection of placeholders in an object language is that the grammar

Gtemplate often becomes highly ambiguous. The ambiguities are caused by the possibility

to recognize multiple parameterized placeholders. The chance of ambiguities increases

if more object language nonterminals are extended with placeholder syntax. Therefore

automatic parameterization of placeholders with every object language nonterminal is un-

desired. The selection process of the nonterminals for parameterization of the placeholders

must be done manually. In Section 6.6 this problem will be discussed in more detail. It

is hard to automatically predict which sorts must be selected for the parameterization of

placeholders. A similar problem is discussed in [Visser (2002)]: although the authors gen-

erate their connection rules, they consider it useful to have full control over the selection of

the nonterminals.

Figure 5.9 shows the combination module for the PICO Language. This template grammar

can parse the unparser template of Figure 4.7.

There is one requirement left for the object language grammar. Nonterminals in Gobject

must not be defined in Gmeta, that is Nobject∩Nmeta = /0; otherwise undesirable and uncon-

trolled nonterminal injections occur. In practice this can be simply achieved by adding a

unique prefix or suffix to the (non)terminals of a grammar, or a typical SDF specific solu-

tion consists of parameterization of all nonterminals of a language with its language name

to create a namespace [Bravenboer et al. (2006b)].

The modularity of SDF allows specifying the metalanguage and object language grammars
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separately. The advantage of this approach is the ease of using off-the-shelf object lan-

guage grammars [Klint et al. (2005)]. In case an off-the-shelf object language grammar

is not available and full syntax checking of templates is not required, one can decide to

use an island grammar [Moonen (2001)]. An island grammar only defines small parts of

a language. The rest of the language is defined at a global level, for example as a list of

characters.

5.4 Similar Approaches

SafeGen [Huang et al. (2005)] is an approach aiming for type safe templates. It uses an au-

tomatic theorem prover to prove the well-formedness of the generated code for all possible

inputs.

This approach heavily depends on the assumptions that the input is a valid Java program and

the knowledge of the Java type system. The template programmer can define placeholders

(cursors) to obtain data from the Java input program. Those placeholders must contain

constraints based on their use in the template. For example a placeholder in the extends

section of a class in a template must guarantee the extended class is not final. A prover

used to check the constraints ensures that the template cannot generate ill-formed code.

SafeGen depends on the knowledge that the input and output program is Java. This fact

makes the environment incapable of generating code from an abstract high-level input data

in another representation than the object language. Although the approach could give more

and better guarantees about the generator, switching to another object language and input

data representation is hard. A template grammar, such as described here, is more flexible

in the choice of input data language and output language.

Another approach to achieve syntax-safe code generation is using abstract parsing [Kong

et al. (2009)]. Abstract parsing is a statically analysis technique for checking the syntax

of generated strings. It uses data-flow analysis and checks via a kind of parser if the data-

flow produces a sentence conform the intended output language grammar. During runtime

no further checking is required. This technique requires an analyzer for the data-flow to

feed the parser. Abstract parsing is a generalization of the template grammar, as it can be

used for every kind of metaprogram, when data-flow analysis is possible. In contrast with

abstract parsing, syntax-safe templates do not need external data-flow analysis to achieve

syntax-safety.
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5.5 Conclusions

In this chapter an approach to define a grammar with syntax rules for all languages in a

template is presented. Having such a grammar allows to detect syntax errors in the object

code of a template while parsing the template, instead of dealing with syntax errors at

compile time of the generated code. The whole template is parsed, and thus checked for

syntax errors, including rarely generated code in conditional placeholders. Checking a

template offers accurate error messages, instead of checking the generated code such as the

output of the C preprocessor [Ernst et al. (2002)]. It is the first step to achieve more safety

in template evaluation and helps to avoid syntax errors, like misspellings. The templates

are syntactically not different from text-templates and as a result they provide the same user

experience.

The modular grammar definition combined with parameterization allows to instantiate tem-

plate grammars for different object languages with minimal redefinition and cloning. The

advantage of this approach is the ease of using off-the-shelf object language grammars.

Parsing templates on its own is not sufficient to guarantee that the output of the template

evaluator is a sentence of the output language. In Chapter 6 syntax-safe evaluation is dis-

cussed, including the requirements for it.
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Chapter 6

Repleo: Syntax-Safe Template Evaluation

Parsing a template alone is not sufficient to achieve syntax-safe code generation. Via the

introduction of the substitution placeholder and the free choice of identifiers for subtem-

plates, correctness of the parse tree of a template does not imply that the generated code

will be syntactically correct. For example, a subtemplate call placeholder with identifier

s is applied for nonterminal n1, while the root nonterminal of the subtemplate with the

identifier s is n2 and thus not equal to n1. Although the substitution placeholder breaks

static verification of syntax-safety, it is a design choice to leave it in the metalanguage, as

it is one of the “natural” constructs in a template metalanguage. Most (industrial) template

evaluators offer the substitution placeholder. Figure 1.13, Figure 4.11, Figure 4.13 and Fig-

ure 4.15 show examples of applications of the substitution placeholder in related template

evaluators. The substitution placeholder allows replacing it by unstructured strings stored

in the input data. Therefore, it is necessary to dynamically verify that the string stored in

the input data is allowed to replace the placeholder.

This chapter discusses the implementation of a syntax-safe template evaluator. The tem-

plate grammar is used to obtain a parse tree of a template and to check the syntax of object

code and metacode in one parse phase. The template evaluator uses the object language

grammar while substituting the placeholders to guarantee that the output parse tree com-

plies to the object language grammar. Syntax-safe evaluation is achieved by checking that

a placeholder parsed as nonterminal Aobject is replaced by a sub parse tree where the root

is nonterminal Aobject. Repleo is implemented to facilitate empirical validation of syntax-

safe evaluation and to facilitate empirical validation of the usability of unparser-complete

metalanguages (see Chapter 7).

First the syntax-safe evaluation function is discussed, followed by the specific evaluation

for the substitution placeholder, match-replace placeholder and subtemplate call place-

holder in Sections 6.2, 6.3 and 6.4. Syntax-safe evaluation also allows implicit subtem-
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plates in order to express list rendering and tree rendering in a more compact fashion. This

implicit subtemplate mechanism is introduced and the revisited substitution placeholder

evaluation is discussed in Section 6.5. In addition to the discussion of the placeholders, the

evaluator also has to resolve ambiguities and handle separators in Section 6.6 and 6.7. After

the introduction of syntax-safe evaluation, a couple of examples of syntax-safe templates

are presented, including a reimplementation of the PICO unparser using the additional se-

mantic properties of the metalanguage in Section 6.10.

6.1 Syntax-Safe Evaluation

The operational semantics of syntax-safe evaluation are based on the semantics of the meta-

language discussed in Section 4.2. These operational semantics are extended, since the in-

formation in the parse tree allows defining implicit subtemplates, resulting in more concise

templates.

The core of the syntax-safe evaluator is the same single tree traversal as discussed in Sec-

tion 4.2, with a different signature:

seval : Template×Templates×MVars→ Tree,

where Template is the current template parse tree, Templates is a symbol table containing

(sub)template parse trees, MVars is a symbol table containing metavariables and Tree is the

parse tree resulting from the template evaluation. The function is called seval to emphasize

the difference between the non syntax-safe template evaluator eval function. The seval

function differs from the eval function in the following properties:

• The output of seval is a parse tree of the output language, the yield function is used to

convert it to a string;

• Template and Templates are parse trees rather than strings; lexical analysis is performed

during the template parsing;

• The symbol table Templates is a block-structured symbol table (see Section 4.2.2).

The seval function traverses the parse tree and checks whether the current node is a place-

holder. At the moment a placeholder is found, the type of placeholder (substitution, match-

replace or subtemplate call) is determined using the annotation and the accompanying seval

evaluation sub function is invoked. The result of that sub function is a sub parse tree replac-

ing the placeholder node, unless an error occurs. The final result of the evaluator function

is a parse tree without placeholders, or an error message.
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In Section 5.2 the grammars for the placeholders were presented. The production rules

for the placeholders were extended by the annotation placeholder(...), containing the

kind of the placeholder, i.e. substitution, subtemplate, or matchreplace, which is

used by seval to select the evaluation function. This annotation is an implementation choice

simplifying placeholder detection in the parse tree. The traversal function matches on the

annotation instead of the syntactical pattern of the placeholder.

When seval detects a placeholder in the parse tree, it is necessary to know to what ob-

ject language nonterminal it is applied, i.e. the type of the parent node in the parse tree.

Therefore, to obtain the object language nonterminal of the placeholder a helper function

getparentnt : Tree → n is introduced. There are several ways to implement this function.

For example, seval can be extended by an extra parameter holding the parent nonterminal,

or the nonterminal of the placeholder can be parameterized by the parent nonterminal. A

specific technical solution is used in the Repleo implementation; this solution is based on

the assumption that the SGLR parser implementation is used. The SGLR parser implemen-

tation produces verbose parse trees, where every node is augmented with the production

rule used for instantiating it. The getparentnt function uses this production rule to obtain

the parent nonterminal. It returns the producing nonterminal from the production rule,

which is equal to the parent node in the parse tree.

6.2 Substitution Placeholder

The substitution placeholder allows one to have unstructured data in the form of a string

in the input data tree and to use it for replacing a substitution placeholder. A mechanism

is necessary to verify that it is valid to substitute the placeholder in the template with the

string from the input data.

A sub parse tree with root nobject can safely replace a substitution placeholder of nonter-

minal nobject. The expression specified in the substitution placeholder can result in a string

or a tree. In Section 6.5 the behavior is discussed when the result of the expression eval-

uation is a tree. In case the expression evaluator yields a string, it is necessary to convert

the string to the corresponding parse tree and check whether its root is nobject. The check

is implemented using a parser for the object language. When the parsing succeeds and the

root nonterminal of the (sub) parse tree is nobject, the parse tree can safely substitute the

placeholder. In case the string of the input data cannot be parsed or the root nonterminal

differs from nobject, i.e. the string is not a sentence of L (G(nobject)), an error message is

generated.
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The following equation specifies the behavior of the syntax-safe substitution evaluation.

For ease of presentation, the concrete object syntax notation is used in the equation. In-

spired by [Visser (2002)], the notation [[. . .]] is used to specify concrete syntax, which is

internally represented as a parse tree.

getparentnt([[<: expr :>]]) 8→ n

evalexpr([[expr]],bstvars) 8→ s

parseG(n)(s) 8→ t

seval([[<: expr :>]],bsttmps,bstvars) 8→ t

getparentnt([[<: expr :>]]) 8→ n

evalexpr([[expr]],bstvars) 8→ s

parseG(n)(s) = ERROR

seval([[<: expr :>]],bsttmps,bstvars) 8→ ERROR

6.3 Match-replace Placeholder

The evaluation of match-replace placeholders does not differ from the evaluation scheme

discussed in Section 4.2.4. Only at the start of the evaluation of the match-replace, the (sub)

parse tree belonging to the match-replace is added to the (sub)templates symbol table in a

fresh scope. The label for the subtemplate is equal to the nonterminal of the match-replace

prefixed with a _. The prefix _ is not allowed for manual declared (sub)templates, so the

labels of the implicit placeholders do not conflict with the labels of manually declared

(sub)templates.

The use of scopes is necessary to remove conflicts if multiple implicit subtemplates are

added to the symbol table with the same name, i.e. the same nonterminal of the match-

replace. This mechanism facilitates that the last added implicit subtemplate is selected,

when multiple match-replace placeholders for the same nonterminal are nested.

The formalized behavior specification is presented below. It is almost equivalent to the

equation of Section 4.2.4, except that it uses parse trees instead of strings. Furthermore, the

b.j.arnoldus@repleo.nl



Repleo: Syntax-Safe Template Evaluation 115

sub parse tree of the match-replace is stored on the subtemplate stack.

t1 = [[<: match :>[mr1, . . . ,mri] <: end :>]]

getparentnt(t1) 8→ n

startblk(bstvars1) 8→ bstvars2

startblk(bsttmps1) 8→ bsttmps2

add(bsttmps2, n, t1) 8→ bsttmps3

lookup(bstvars2,$$) 8→ t2

findmatch(t2, [mr1, . . . ,mri],bstvars2) 8→ ⟨t3,bstvars3⟩

seval(t3,bsttmps3,bstvars3) 8→ t4
seval([[<: match :>[mr1, . . . ,mri] <: end :>]],bsttmps1,bstvars1) 8→ t4

6.4 Subtemplate Placeholder

Syntax-safe evaluation requires that the subtemplate call placeholder is replaced by a sub

parse tree with root nonterminal nobject which is equal to the nobject where the subtemplate

call placeholder is applied. The behavior of the subtemplate call placeholder is not changed

with respect to the operation definition in Section 4.2.3. A subtemplate is selected based

on its identifier. However, the free choice of an identifier for subtemplates results in the

risk that the subtemplate is not of the correct syntactic sort to replace the subtemplate call

placeholder.

In order to guarantee syntax-safety, a sub parse tree with the correct root nonterminal must

replace the subtemplate call placeholder. Hence, it is only allowed to insert the result of an

evaluated subtemplate when its root nonterminal matches the nonterminal where the sub-

template call placeholder is applied. An extra condition is added to the original operation

semantics to check whether the root nonterminal of the subtemplate matches the nontermi-

nal of the calling placeholder. An error is generated in case no suitable subtemplate can be
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found.

getparentnt([[<: idcon(expr) :>]]) 8→ n1

lookup(bsttmps, idcon) 8→ t

getparentnt(t) 8→ n2

n1 = n2

evalexpr([[expr]],bstvars1) 8→ bstvars2

seval(t,bsttmps,bstvars2) 8→ t ′

seval([[<: idcon(expr) :>]],bsttmps,bstvars1) 8→ t ′

getparentnt([[<: idcon(expr) :>]]) 8→ n1

lookup(bsttmps, idcon) 8→ t

getparentnt(t) 8→ n2

n1 ̸= n2

seval([[<: idcon(expr) :>]],bsttmps,bstvars) 8→ ERROR

6.5 Substitution Placeholder Revisited

In the discussion of the metalanguage in Chapter 4 the concept of subtemplates is intro-

duced to enable unfolding to render lists and trees, or to enable the reduction of code clones

in the templates. The disadvantage of using the match-replace and subtemplates to express

the rendering of lists and trees is its verbosity. Furthermore, the structure of the generated

code is less clear, since a subtemplate placeholder is called at the place where the list or

tree must be rendered. The availability of syntax-safe templates enables to define implicit

subtemplates, providing a more natural way to express unfolding. It uses the syntactical

type of the match-replace placeholder to automatically add an implicit subtemplate to the

subtemplates symbol table and the syntactical type of the substitution placeholder to invoke

the subtemplate.

The concept of implicit subtemplates is shown by the following figures. Figure 6.1 shows a

snippet of the original PICO unparser with a subtemplate decls. This subtemplate can be

re-factored to an implicit subtemplate. Figure 6.2 shows the integration of the subtemplate

decls in the first match-replace placeholder. The subtemplate call <: decls($tail) :>

is replaced by a substitution placeholder <: $tail :>. Since the match-replace place-

holder will be parsed as Decls and the placeholder <: $tail :> will also be parsed as
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Decls, this mechanism will render a list of declarations. The [ head ] match rule can

also be omitted as specified in the original PICO unparser of Chapter 4, since the syntax-

safe evaluator provides a generic separator handler (see Section 6.7).

t e m p l a t e [
2 <: match :>

<: program ( d e c l s ( $ d e c l s ) , $s tms ) =:>
4 b e g i n d e c l a r e

<: d e c l s ( $ d e c l s ) :> ;
6 <: s tms ( $s tms ):>

end
8 <: end :>

]
10

d e c l s [
12 <: match :>

<: [ ] =:>
14 <: [ $head ] =:> <: i d t y p e ( $head ) :>

<: [ $head , $ t a i l ] =:> <: i d t y p e ( $head ) :> , <: d e c l s ( $ t a i l ) :>
16 <: end :>

]

Fig. 6.1 Original snippet of PICO abstract syntax tree unparser.

1 t e m p l a t e [
<: match :>

3 <: program ( d e c l s ( $ d e c l s ) , $s tms ) =:>
b e g i n d e c l a r e

5 <: match :>
<: [ ] =:>

7 <: [ $head , $ t a i l ] =:> <: i d t y p e ( $head ) :> , <: $ t a i l :>
<: end :> ;

9 <: s tms ( $s tms ):>
end

11 <: end :>
]

Fig. 6.2 Implicit subtemplate example.

Implicit subtemplates use the property that the object language nonterminal can be used

as a label for a subtemplate. As mentioned in Section 6.3, the sub parse tree of a match-

replace placeholder is added to symbol table containing the subtemplates. The match-

replace placeholder acts as an implicit subtemplate, where the identifier is the object lan-

guage nonterminal prefixed by an underscore. A substitution placeholder in the object code
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fragments of the match rules can call the implicit subtemplate. This placeholder becomes

an implicit subtemplate caller, when its expression results in a subtree of the input data

instead of a string. At the moment the expression returns a tree, an implicit subtemplate is

selected based on the syntactical type of the substitution placeholder. The last added im-

plicit subtemplate with the same syntactical type as the substitution placeholder is used for

evaluation. The current input data context is set to the subtree selected by the expression

of the substitution placeholder. If no implicit subtemplate can be found, an error will be

generated. The additional rules for the behavior of the substitution placeholder calling an

implicit placeholder are shown below.

getparentnt([[<: expr :>]]) 8→ n

evalexpr([[expr]],bstvars1) 8→ t

startblk(bstvars1) 8→ bstvars2

add(bstvars2,$$, t) 8→ bstvars3

lookup(bsttmps, n) 8→ t1

seval(t1,bsttmps,bstvars3) 8→ t2
seval([[<: expr :>]],bsttmps,bstvars1) 8→ t2

getparentnt([[<: expr :>]]) 8→ n

evalexpr([[expr]],bstvars1) 8→ t

startblk(bstvars1) 8→ bstvars2

add(bstvars2,$$, t) 8→ bstvars3

lookup(bsttmps, n) = ε

seval([[<: expr :>]],bsttmps,bstvars1) 8→ ERROR

6.6 Ambiguity Handling

Adding placeholders to the grammar of an object language to obtain a template grammar

can lead to undesired ambiguities. An ambiguity occurs when a (sub) parse tree of a (sub)

sentence can be constructed in multiple ways using the production rules of a context-free

grammar. In the situation of the constructed template grammars ambiguities can have two

causes: either the object language grammar itself is already ambiguous or the combination

of object language grammar and metalanguage grammar introduces ambiguities. Ambigu-

ities are a problem when parsing (source) code, because it can lead to misinterpretation.
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Although those ambiguities are unwanted when analyzing source code, they do not matter

when generating source code, as will be shown in this section.

Instantiating template grammars, by adding placeholders to an object language grammar,

can introduce new ambiguities. Placeholders are added as alternative for different object

language nonterminals, but the syntax of these placeholders is equal. The parser cannot

distinguish syntactically the desired derivation when different placeholders fit, hence the

introduction of the explicit syntactical typing for placeholders via the optional syntax of the

nonterminal PlaceHolderType[[Sort]]. Adding placeholders as alternatives for object

language nonterminals can result in two kinds of ambiguities:

• Multiple sibling alternative placeholders can be used to parse the sentence;

• The placeholders are defined in chain rules and multiple chain rules can be used to

parse the sentence.

The following examples illustrate these two causes. The first example is based on different

possible sibling alternatives for a nonterminal. This kind of ambiguity is introduced when

a grammar has the following two production rules: n1 → n3,n2 → n3, where both n1 and

n2 are extended with a placeholder. Consider the grammar of Figure 6.3. The grammar

becomes ambiguous when placeholder syntax is added to the nonterminals A and B. Fig-

ure 6.4 shows the ambiguous parse tree of the template <: v1 :>. The placeholder can

be either parsed as child of the nonterminal A or as child of the nonterminal B. It depends

on the value stored in the input data for the node v, whether the final evaluated template

results in the branch for nonterminal A or the branch for nonterminal B.

During evaluation, the final selection of which alternative succeeds depends on the content

of the input data. Consider the following two inputs:

(1) v( "a" )

(2) v( "b" )

Both inputs will result in a valid parse tree for the object language. The first input yields

the left branch of the ambiguity; the second input the right branch.

The second cause for ambiguities is the presence of chain rules in the grammar when parent

and child nonterminal both are extended with a placeholder. A production rule is a chain

rule, when it has the following form n1 → n2. Consider the grammar of Figure 6.5 and

define placeholders for the nonterminals A and B; the grammar becomes ambiguous. Fig-

ure 6.6 shows this ambiguity inside the parse tree of the term <: "a" :>. The placeholder

can parsed either as an placeholder for the nonterminal A or B. Considering Figure 6.5,
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after evaluation PlaceHolder[[A]] will return a sub parse tree with A as root and "a" as

child, while evaluating PlaceHolder[[B]] will return a sub parse tree with B as root, A as

child of B and "a" as terminal. When both branches of the ambiguity are evaluated, both

branches of the ambiguity will contain the same sub parse tree.

c o n t e x t−f r e e s t a r t −symbols C
2 c o n t e x t−f r e e s y n t a x

A | B −> C
4 ” a ” −> A

” b ” −> B

Fig. 6.3 Grammar with two alternatives.

START

C

amb

A

PlaceHolder[[A]]

...
v1

B

PlaceHolder[[B]]

...
v1

Fig. 6.4 Parse tree of ambiguous template.

A parser used to parse a template should be based on an algorithm supporting ambiguities,

as by nature a template grammar is probably ambiguous. The support of ambiguities is the

reason for the use of a(n) (S)GLR based parser. This kind of parsers constructs a collection

of (sub) parse trees in case of an ambiguity. The SGLR parser automatically constructs

a parse tree. A special amb node is introduced by SGLR in case of an ambiguity. This

amb node contains the list of possible valid (sub) parse trees. Other parser algorithms

supporting ambiguities such as the Cocke-Younger-Kasami algorithm [Nijholt (1991)], the

Earley algorithm [Earley (1970)] and more recently GLL [Scott and Johnstone (2010)] can

be used. Parser algorithms like LL, LR and LALR [Aho et al. (1986)] cannot be used, as

they do not support ambiguities.
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1 c o n t e x t−f r e e s t a r t −symbols B
c o n t e x t−f r e e s y n t a x

3 A −> B
” a ” −> A

Fig. 6.5 Grammar with chain rules.

START

amb

B

A

PlaceHolder[[A]]
...

“a”

B

PlaceHolder[[B]]
...

“a”

=⇒

START

amb

B

A

“a”

B

A

“a”

Fig. 6.6 Chain rule ambiguity and evaluation result.

Ambiguities belonging to the mix of object language and metalanguage must not be solved

during parsing, but stored in the parse tree. These ambiguities represent different syntac-

tically legal alternatives for the output code. It is undesired to remove legal alternatives

during parsing if not explicitly defined in the templates, as removing legal alternatives

would limit the applicability of a template.

A disambiguation filter based on rewriting [Vinju (2005)] is used to resolve the ambiguities

during template evaluation. In order to deal with ambiguities the evaluator tries to evaluate

the different alternatives of the ambiguities with the same context, i.e. bsttmps and bstvars.

The alternatives are evaluated one by one and at the moment an alternative successfully

evaluates; it is used to replace the ambiguity node. The steps are shown by the equations

below. This filter is part of the seval traversal function and matches on ambiguity nodes.

seval(t1,bsttmps,bstvars) 8→ t
seval(amb(t1, . . . , tk),bsttmps,bstvars) 8→ t

seval(t1,bsttmps,bstvars) = ERROR

seval(amb(t2, . . . , tk)) 8→ t
seval(amb(t1, t2, . . . , tk),bsttmps,bstvars) 8→ t
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seval(t1,bsttmps,bstvars) = ERROR
seval(amb(t1),bsttmps,bstvars) 8→ ERROR

It is not necessary to evaluate every alternative of the ambiguity when a successful evalua-

tion is found [Bravenboer et al. (2007)]. Evaluating different ambiguity alternatives could

result in different structures of the parse trees, but the leaves of those trees contain the same

lexical characters. The yielded strings of different ambiguity alternatives are identical. This

and since after evaluation the resulting parse tree is converted to a string, allows stopping

evaluating the ambiguity alternatives after one successful result is found. The evaluator

generates an error when it is not possible to evaluate any of the ambiguity alternatives

successfully.

Although ambiguities could not always be avoided during the construction of a template

grammar, one should carefully select the object language nonterminals to extend with

placeholders syntax to prevent undesired ambiguities. The algorithm presented above can

resolve the remaining template related ambiguities, but this solution comes with a perfor-

mance penalty.

6.7 Separator Handling

SDF supports lists with separators. When a template is evaluated containing separated lists,

it is not automatically guaranteed that the separated lists in the generated code are syntac-

tical correct. Figure 6.7 shows an example that generates code with a syntax error. The

comma at the second match-rule is parsed as separator. Following the evaluation rules of

the match-replace, this template will generate a terminated list (t, t, t,) instead of a separated

list, while a separated list (t, t, t) is required. In a text-based context one can solve this prob-

lem by introducing a third rule between line 2 and 3: <: [ $head ] =:> <: $head $>.

This solution is also chosen in the text-based PICO unparser of Figure 4.7.

<: match :>
2 <: [ ] =:>

<: [ $head , $ t a i l ] =:> <: $head :> , <: $ t a i l :>
4 <: end :>

Fig. 6.7 Separated list generation.

In case of syntax-safe templates based on SDF, where a verbose parse tree is available this
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fix is not necessary. The evaluator uses the information in the parse tree to fix the separators

and guarantee that the separator in a separated list is correctly applied. The filter checks

whether a separated list conforms to the pattern n1sn2 . . .snk, where n represents an element

and s the separator. It adds or deletes separators in case they are missing or redundant. This

solution is also used in the ASF evaluator [Bergstra et al. (1989)].

6.8 Repleo

In order to perform practical validation of the ideas a prototype called Repleo is imple-

mented based on the presented template grammars and evaluation strategy. The Repleo

evaluator is generic with respect to the object language of a template grammar. It can be

used for every template grammar constructed following the method of Chapter 4.

The implementation is separated in two components: the SGLR parser including the tem-

plate grammars defined in SDF and the template evaluator. The template evaluator is writ-

ten in Java and composed around a tree traversal, i.e. the seval function. The traversal calls

the SGLR parser to parse strings from the input data in case a substitution placeholder is

detected. The evaluation process is stopped when an error occurs to prevent generation of

syntactical incorrect code. The error handling uses the exception mechanism provided by

Java. When an error is detected an error message is thrown, which contains the reason of

the error and source code location in the template.

6.9 Other Syntax-Safe Template Approaches

First, the approach of Heidenreich et al. [Heidenreich et al. (2009)] is based on abstract

syntax of templates. Heidenreich et al. designed a syntax-safe template approach based

on metamodels. Metamodels define the abstract syntax grammar of the template language

and models are instantiations of these templates, comparable to an abstract syntax tree of a

template. These metamodels even allows one to go beyond syntax-safety and perform some

static semantic checking. However, reasoning on the level on abstract syntax of templates

ignores some practical syntactical related issues, like layout and syntactical ambiguities.

Wachsmuth [Wachsmuth (2009)] presented an alternative approach. He discusses an ap-

proach to extend a target language grammar with metalanguage artifacts in order to obtain

a template grammar, which guarantees syntax-safe generation of code. It is similar to the

constructing a template grammar discussed in Theorem 5.1.1. The approach of Wachsmuth

statically enforces syntax correctness, since substitution placeholders are not supported
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and thus all output code is already defined in the template. Hence the relation with Theo-

rem 5.1.1. This approach does not allow having substitution placeholders replacing them-

selves by string values from the input data. Substitution placeholders are not necessary for

unparser-completeness (see Theorem 4.2.1). However, a metalanguage without substitu-

tion placeholders is less flexible in use, since the behavior of the substitution placeholder

must be captured in a combination of match-replace like placeholders and subtemplates

(see Section 4.2.5).

6.10 Case Studies

This section discusses examples of syntax-safe templates. The first case study is the reim-

plementation of the PICO unparser of Section 4.3. The goal of this reimplementation is to

show the benefits of implicit subtemplates.

In order to show that syntax-safe templates are not limited to academic toy languages, three

case studies are presented based on the industrially used object languages Java (general

purpose programming language), XHTML (website markup language), and SQL (database

query language). The choice of these object languages is based on their contemporary use

in three-tier (web) applications; Java for the business layer, SQL for the database layer

and XHTML for the presentation layer. Finally, a template based on an object language

supporting multiple languages is presented. This example shows an object language based

on Java with embedded SQL.

6.10.1 PICO Unparser

Syntax-safe evaluation provides implicit subtemplates and separator handling. This reduces

the amount of syntax necessary to implement list generation and tree generation compar-

ing to the text-based templates of Chapter 4. Figure 6.8 shows the reimplementation of

the PICO unparser using the syntax-safe evaluator. Most match-replace placeholders are

nested, only the expr code is defined in a subtemplate, since it is called on three places in

the template and replacing these calls with the code of the subtemplate expr will result in

cloning. After refactoring, the definition of the PICO unparser is 9 lines shorter than the

text-based template PICO unparser implementation (see Section 4.3).
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t e m p l a t e [
2 <: match :>

<: program ( d e c l s ( $ d e c l s ) , $s tms ) =:>
4 b e g i n d e c l a r e

<: match $ d e c l s :>
6 <: [ ] =:>

<: [ d e c l ( $id , $ t y p e ) , $ t a i l ] =:>
8 <: $ i d :> : <: match $ t y p e :>

<: n a t u r a l =:> n a t u r a l
10 <: s t r i n g =:> s t r i n g

<: n i l−t y p e =:> n i l−t y p e
12 <: end :> ,

<: $ t a i l s o r t : ID−TYPE∗ :>
14 <: end :>

;
16 <: match $s tms :>

<: [ ] =:>
18 <: [ $head , $ t a i l ] =:>

<: match $head :>
20 <: a s s i g n m e n t ( $id , $expr ) =:>

<: $ i d :> := <: exp r ( $expr ) :>
22 <: w h i l e ( $expr , $s tms ) =:>

w h i l e <: exp r ( $expr ) :> do
24 <: $s tms s o r t :STATEMENT∗ :>

od
26 <: i f ( $expr , $ thens tms , $ e l s e s t m s ) =:>

i f <: exp r ( $expr ) :> t h e n
28 <: $ t h e n s t m s s o r t :STATEMENT∗ :>

e l s e
30 <: $ e l s e s t m s s o r t :STATEMENT∗ :>

f i
32 <: end :> ;

<: $ t a i l s o r t :STATEMENT∗ :>
34 <: end :>

end
36 <: end :>

]
38 exp r [

<: match $expr :>
40 <: n a t c o n ( $ n a t c o n ) =:> <: $ n a t c o n s o r t : EXP :>

<: s t r c o n ( $ s t r c o n ) =:> <: $ s t r c o n s o r t : EXP :>
42 <: i d ( $ i d ) =:> <: $ i d s o r t : EXP :>

<: sub ( $ lhs , $ r h s ) =:>
44 <: $ l h s s o r t : EXP :> − <: $ r h s s o r t : EXP :>

<: c o n c a t ( $ lh s , $ r h s ) =:>
46 <: $ l h s s o r t : EXP :> | | <: $ r h s s o r t : EXP :>

<: add ( $ lhs , $ r h s ) =:>
48 <: $ l h s s o r t : EXP :> + <: $ r h s s o r t : EXP :>

<: end :>
50 ]

Fig. 6.8 PICO abstract syntax tree unparser (syntax-safe).
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6.10.2 Java

The first example of a template with an industrially used object language is a Java template.

This template generates data model classed in Java, i.e. Java classes with fields accompa-

nied with getters and setters. The template is shown Figure 6.10. The template grammar

used for parsing this template is shown in Figure 6.9.

module Template−Java
2

i m p o r t s J ava
4 i m p o r t s S t a r t S y m b o l [ ” C o m p i l a t i o n U n i t ∗” C o m p i l a t i o n U n i t ∗ ]

i m p o r t s P l a c e H o l d e r [ ” ID ” ID ]
6 i m p o r t s P l a c e H o l d e r [ ” Type ” Type ]

i m p o r t s P l a c e H o l d e r [ ” M o d i f i e r ” M o d i f i e r ]
8 i m p o r t s P l a c e H o l d e r [ ” ClassBodyDec ∗” ClassBodyDec ∗ ]

i m p o r t s P l a c e H o l d e r [ ” BlockStm ∗” BlockStm ∗ ]

Fig. 6.9 Java template grammar.

1 c l a s s <: model2name1 :> {

3 <: mo de l3cons1v i s1 :> <: model2name1 : >(){}

5 <: match m o d e l 4 f i e l d s 1 :>
<: [ ] =:>

7 <: [ f i e l d ( $ f i e l d ) , $ t a i l ] =:>
p r i v a t e <: $ f i e l d 2 t y p e 1 :> <: $ f i e l d 1 n a m e 1 :> ;

9
<: $ f i e l d 2 t y p e 1 :> <: ” g e t ” + $ f i e l d 1 n a m e 1 : > ( ){

11 <: match $ f i e l d 1 l o g 3 :>
<: t r u e =:> System . o u t . p r i n t l n ( ” g e t ” +

13 <: ”\”” + $ f i e l d 1 n a m e 1 +
”\”” : >+”() i s c a l l e d . ” ) ;

15 <: end :>
r e t u r n <: $ f i e l d 1 n a m e 1 :> ;

17 }

19 vo id <: ” s e t ” + $ f i e l d 1 n a m e 1 :>(
<: $ f i e l d 2 t y p e 1 :> v a l u e ){

21 <: $ f i e l d 1 n a m e 1 :> = v a l u e ;
}

23 <: $ t a i l :>
<: end :>

25 }

Fig. 6.10 A Java template.
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1 model (
number ( 1 0 4 ) ,

3 name ( ” Customer ” ) ,
cons ( v i s ( ” p u b l i c ” ) ) ,

5 f i e l d s ( [
f i e l d (

7 name ( ” f i r s t N a m e ” ) ,
t y p e ( ” S t r i n g ” ) ,

9 l o g ( t r u e )
) ,

11 f i e l d (
name ( ” las tName ” ) ,

13 t y p e ( ” S t r i n g ” ) ,
l o g ( f a l s e )

15 )
] )

17 )

Fig. 6.11 Input Data example for Java Template of Fig-
ure 6.10.

Syntax errors in a template based generation system can be caused by errors in the template

or by invalid input data. Table 6.1 shows a couple of errors that could be made in the tem-

plate of Figure 6.10 and errors that could be made in the input data shown in Figure 6.11.

First, the object code of a template contains syntax errors and the generated code inherits

these errors (errors A and B). Second, the data obtained from the input data to substitute a

placeholder does not syntactically fit into the object code of the template (errors C, D and

E). These errors are prevented in case of using syntax-safe templates. The first set of errors

(C, D, and E) are detected during parsing the template, the second class of errors (A and B)

will be reported during the evaluation of the template.

Table 6.1 Possible errors in template and input data.

Substitute by creating error
line

A 1 clss <: model2name1 :> { class misspelled.

B 12 1System.out.println("get" 1System is not a valid identifier.

C 1 class <: model1number1 :> { number not allowed as identifier.

D Input, 3 name("Shop-Client") identifier contains a dash.

E Input, 4 vis("abstract" ) modifier abstract not allowed.
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6.10.3 XHTML

Templates are a common technique to render (X)HTML for web pages in web applications.

XHTML (Extensible Hypertext Markup Language) is a markup language based on XML

and the Hypertext Markup Language (HTML). The syntax of XHTML is more strict than

HTML, and can be specified using a context-free syntax formalism. The instantiation of

a combination grammar for XHTML templates is shown in Figure 6.12. Based on the

same input data of Figure 6.11, a template to generate a basic XHTML form is defined in

Figure 6.13.

1 module Template−XHtml

3 i m p o r t s XHtml
i m p o r t s S t a r t S y m b o l [ ” XHtml” XHtml ]

5 i m p o r t s P l a c e H o l d e r [ ”PCDATA” PCDATA]
i m p o r t s P l a c e H o l d e r [ ”CDATA” CDATA]

7 i m p o r t s P l a c e H o l d e r [ ” Quoted−CDATA” Quoted−CDATA]
i m p o r t s P l a c e H o l d e r [ ” XHtml−form−c o n t e n t−i t em ∗”

9 XHtml−form−c o n t e n t−i t em ∗ ]

Fig. 6.12 XHTML template grammar.

A screen shot of the output after evaluation of the XHTML template is shown in Fig-

ure 6.14. For every field in the input data an input field is generated in the web form.

The use of a template grammar for the template prevents syntax errors in the object code.

An example of such an error is a space between < and input at line 15 in Figure 6.13.

The syntax-safe evaluation results in the guarantee that the output is always a syntactically

valid XHTML document. It can even be used to prevent injection attacks. This application

of syntax-safe evaluation is discussed in Section 7.5.

6.10.4 SQL

SQL is a language in the domain of information systems for expressing database queries.

The Listing 6.15 shows the combination module definition for parsing templates for SQL

select statements.
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1 <!DOCTYPE HTML PUBLIC ”− / /W3C / / DTD XHTML 1 . 0 S t r i c t / / EN”
” h t t p : / / www. w3 . org / TR / xhtml1 /DTD/ xhtml1− s t r i c t . d t d”>

3
<html>

5 <head>
< t i t l e ><: model2name1 + ” form ” :></ t i t l e >

7 </head>
<body>

9 <form a c t i o n = ” / commit ” method =” p o s t ”>
<: match m o d e l 4 f i e l d s 1 :>

11 <: [ ] =:>
<: [ f i e l d ( $ f i e l d ) , $ t a i l ] =:>

13 <p>
<: $ f i e l d 1 n a m e 1 :> <br />

15 <i n p u t t y p e =” t e x t ”
name=<: ”\”” + $ f i e l d 1 n a m e 1 + ”\”” :> s i z e =”20”>

17 </p>
<: $ t a i l :>

19 <: end :>
<p>

21 <i n p u t t y p e =” submi t ” v a l u e =” Submit”>
<i n p u t t y p e =” r e s e t ” v a l u e =” R e s e t”>

23 </p>
</ form>

25 </body>
</ html>

Fig. 6.13 XHTML Template.

Fig. 6.14 Output after evaluation of the XHTML template.
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module Template−Sql
2

i m p o r t s Sq l
4 i m p o r t s S t a r t S y m b o l [ ” S q l I d ” S q l I d ]

i m p o r t s P l a c e H o l d e r [ ” S q l I d ∗” { S q l I d ” , ”}∗ ]

Fig. 6.15 SQL combination module.

The next example shows an SQL select statement template in Figure 6.16. This template

can also be evaluated using the input data of Figure 6.11. The result of the evaluation of

the SQL template is

SELECT (firstName, lastName) FROM Customer

1 SELECT
(

3 <: match m o d e l 4 f i e l d s 1 :>
<: [ ] =:>

5 <: [ f i e l d ( $ f i e l d ) , $ t a i l ] =:>
<: $ f i e l d 1 n a m e 1 :> , <: $ t a i l :>

7 <: end :>
)

9 FROM <: model2name1 :>

Fig. 6.16 SQL Template.

6.10.5 Multi-language Templates

Sometimes program fragments contain multiple programming languages, like a third gen-

eration language with an embedded language. The language containing foreign language

artifacts is called the host language and the embedded language is called guest language.

Usually these guest language fragments are embedded in strings, and considered as data

in the host language. A compiler of the host language is not equipped to check the cor-

rectness of the embedded guest language code. The aim of this section is to show that a

syntax-safe template, where the object language is based on multiple sublanguages, gen-

erates correct sentences with respect to all the sublanguages of the object language. First

StringBorg is discussed, an approach for guaranteeing that multiple languages in a program

are syntactical correct.
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StringBorg [Bravenboer et al. (2007)] is an approach solving the limitation of a compiler

not supporting multiple languages. This system is able to check a host language with em-

bedded guest language code. Quotations (<| ... |>) are used to switch from the host

language, to the guest language(s), and anti-quotations (&{ ... }) to go back to the host

language. StringBorg prevents that guest language artifacts from being syntactically incor-

rect and the approach especially aims at providing protection against injection attacks. A

common example is a language, like Java, containing database queries expressed in SQL.

Figure 6.17 shows a Java listing with embedded SQL using StringBorg to ensure syntactical

correctness of both languages.

1 c l a s s CustomerDao {
p u b l i c C o l l e c t i o n g e t C u s t o m e r s ( ){

3 C o l l e c t i o n i t e m s = new j a v a . u t i l . A r r a y L i s t ( ) ;
SQL q = <| SELECT ( f i r s t N a m e , las tName )

5 FROM Customer |>;
R e s u l t S e t r s = con . que ry ( q . t o S t r i n g ( ) ) ;

7 t r y {
f o r ( ; r s . n e x t ( ) ; ) {

9 Customer i t e m = new Customer ( ) ;
i t em . s e t f i r s t N a m e (

11 r s . g e t S t r i n g ( ” f i r s t N a m e ” ) ) ;
i t em . s e t l a s t N a m e (

13 r s . g e t S t r i n g ( ” las tName ” ) ) ;
i t e m s . add ( i t em ) ;

15 }
} c a t c h ( SQLException e ) {

17 e . p r i n t S t a c k T r a c e ( ) ;
System . e x i t ( 1 ) ;

19 }
r e t u r n i t e m s ;

21 }
}

Fig. 6.17 Java with SQL code inside quotations.

The consequence of using quotations is that the code cannot be compiled and/or executed

without a tool interpreting these quotations. It is desirable to keep the build environment

with as less as possible tools, since all these tools must be maintained. An approach intro-

ducing static syntax-safety for guest language fragments is presented. This approach does

not add new constructs to the syntax of the original host language by defining a grammar

configured to detect guest languages without the quotations. The quotations are defined as

function signatures in the host language. This approach uses the assumption that most guest
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language sentences are specified in an API function call. For example, most Java environ-

ments use JDBC1 to establish a connection to a database. The guest language syntax is

embedded in the host language grammar by adding a specialized function signature for the

generic function signature in the grammar. This approach facilitates syntactical correctness

of all generated code, including the embedded languages. It does not add new language

constructs to the host language, so no extra tooling is necessary to compile and execute the

code. However, StringBorg is more flexible with respect to the places where guest language

fragments can be defined. Syntax-safe templates also do not prevent against dynamic injec-

tion attacks when running the generated code, but only finds syntactical errors in the static

defined code.

The grammar of Figure 6.18 shows the embedding of SQL in Java. It inserts a spe-

cial grammar rule for the function prepareStatement. It is necessary that the function

prepareStatement cannot be parsed as a normal function call. A reject rule is speci-

fied at line 9 to specify prepareStatement as a preferred keyword [van den Brand et al.

(2002)]. The Java-Sql grammar is able to parse Java with embedded SQL code in the

prepareStatement function without adding new language constructions. The connection

between the host language and the guest language should be based on API calls or other

natural transition points. Some effort is needed to define a grammar module for this con-

nection and to maintain it when the API changes. However API’s such as JDBC do not

change often or maintain backward compatibility [Andersen (2006)].

module Java−Sql
2 i m p o r t s Sq l

i m p o r t s J ava
4 e x p o r t s

s o r t s SqlMethod SqlExpr MethodName
6 c o n t e x t−f r e e s y n t a x

SqlMethod ” ( ” SqlExpr ” ) ” −> Expr { p r e f e r }
8 SqlMethodName −> SqlMethod

SqlMethodName −> ID { r e j e c t }
10 AmbName ” . ” SqlMethodName −> SqlMethod

” p r e p a r e S t a t e m e n t ” −> SqlMethodName
12 ”\”” Query ”\”” −> SqlExpr

Fig. 6.18 Combining Java and SQL.

Syntax-safety for all language fragments is also crucial for templates. Syntax errors in

1http://java.sun.com/javase/technologies/database/ (accessed on December 18, 2011)
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guest language fragments of a template can easily remain undetected until run-time. The

compiler of the host language does also not check the guest language fragments. From

a grammar perspective the Java-Sql can be seen as a new language, in other words the

union of languages results in a new language. This new language can be extended with

placeholders in the same way as the original languages. The syntax-safe template evaluator

will guarantee that its output is a sentence of this new language, i.e. all the sublanguages of

the output are syntactical correct. Figure 6.19 shows the template grammar for Java-Sql

templates.

module Template−Java−Sql
2

i m p o r t s Java−Sql
4 i m p o r t s S t a r t S y m b o l [ ” C o m p i l a t i o n U n i t ∗” C o m p i l a t i o n U n i t ∗ ]

i m p o r t s P l a c e H o l d e r [ ” ID ” ID ]
6 i m p o r t s P l a c e H o l d e r [ ” Type ” Type ]

i m p o r t s P l a c e H o l d e r [ ” M o d i f i e r ” M o d i f i e r ]
8 i m p o r t s P l a c e H o l d e r [ ” ClassBodyDec ∗” ClassBodyDec ∗ ]

i m p o r t s P l a c e H o l d e r [ ” BlockStm ∗” BlockStm ∗ ]
10

i m p o r t s P l a c e H o l d e r [ ” S q l I d ” S q l I d ]
12 i m p o r t s P l a c e H o l d e r [ ” S q l I d ∗” { S q l I d ” , ”}∗ ]

Fig. 6.19 Java-SQL template grammar.

Figure 6.20 shows a Java-Sql template. This template can also be evaluated using the in-

put data of the Listing 6.11. The result after evaluating the template is listed in Figure 6.21.

The generated code can be compiled without a special preprocessor and both host language

code and guest language code are guaranteed to be syntactically correct. The template eval-

uator detects syntax errors in both languages, since the grammar contains production rules

for both. For example, an error is generated when an identifier fits in a Java placeholder

but not in an SQL placeholder. This property forces to use the greatest common divisor

of the character classes of the Java identifiers and SQL identifiers in the input data. The

advantage of using an object language grammar containing production rules for embed-

ded languages is that sentences of these sublanguages constructed during code generation

are syntax-safe. It is not an obstacle to use an object language based on multiple unified

context-free languages, since syntax-safe template evaluation only requires that the object

language is context-free.
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c l a s s <: model2name1 + ”Dao” :> {
2 p u b l i c C o l l e c t i o n <: ” g e t ” + model2name1 + ” s ” : > ( ){

C o l l e c t i o n i t e m s = new j a v a . u t i l . A r r a y L i s t ( ) ;
4 R e s u l t S e t r s = con . p r e p a r e S t a t e m e n t (

”SELECT (<: match m o d e l 4 f i e l d s 1 :>
6 <: [ ] =:>

<: [ f i e l d ( $ f i e l d ) , $ t a i l ] =:>
8 <: $ f i e l d 1 n a m e 1 :> , <: $ t a i l :>

<: end :>) FROM <: model2name1 : >” ) ;
10 t r y {

f o r ( ; r s . n e x t ( ) ; ) {
12 <: model2name1 :> i t em = new

<: model2name1 : > ( ) ;
<: match m o d e l 4 f i e l d s 1 :>

14 <: [ ] =:>
<: [ f i e l d ( $ f i e l d ) , $ t a i l ] =:>

16 i t em .< : ” s e t ” + $ f i e l d 1 n a m e 1 :>(
r s . g e t S t r i n g ( < :”\””+ $ f i e l d 1 n a m e 1 + ”\” ” : > ) ) ;

18 <: $ t a i l :>
<: end :>

20 i t e m s . add ( i t em ) ;
}

22 } c a t c h ( SQLException e ) { . . . }
r e t u r n i t e m s ;

24 }
}

Fig. 6.20 Java-SQL template.

1 c l a s s CustomerDao {
p u b l i c C o l l e c t i o n g e t C u s t o m e r s ( ){

3 C o l l e c t i o n i t e m s = new j a v a . u t i l . A r r a y L i s t ( ) ;
R e s u l t S e t r s = con . p r e p a r e S t a t e m e n t (

5 ”SELECT ( f i r s t N a m e , las tName )
FROM Customer ” ) ;

7 t r y {
f o r ( ; r s . n e x t ( ) ; ) {

9 Customer i t em = new Customer ( ) ;
i t em . s e t f i r s t N a m e (

11 r s . g e t S t r i n g ( ” f i r s t N a m e ” ) ) ;
i t em . s e t l a s t N a m e (

13 r s . g e t S t r i n g ( ” las tName ” ) ) ;
i t e m s . add ( i t em ) ;

15 }
} c a t c h ( SQLException e ) { . . . }

17 r e t u r n i t e m s ;
}

19 }

Fig. 6.21 Result of evaluation of Java-SQL template.
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6.10.6 Embedded Languages

Embedding one computer language in another computer language is not a new phe-

nomenon. Most times the embedded languages are considered as strings. Several ap-

proaches go beyond handling these embedded languages as strings.

MetaBorg [Bravenboer et al. (2006a)] is a system to embed a guest language in a host lan-

guage. It translates the guest language fragments into host language fragments. MetaBorg

does not use explicit hedges to indicate the transitions between host language and guest

language. The requirements for MetaBorg differ, as the only concern is the syntactical

correctness of the embedded code. StringBorg is the successor of MetaBorg.

Another approach to embed a language is domain specific embedded compilers [Leijen

and Meijer (1999)]. This is a technology to express a domain specific language, such as

HASKELL/DB, in a high order typed language like Haskell. HASKELL/DB is a propri-

etary language to express database queries in Haskell. These queries are translated to SQL.

The HASKELL/DB fragments are checked for syntax correctness and type correctness.

The type safety is obtained by introducing phantom types for the guest language. Phantom

typing is a technique to create annotations containing type information for the nonterminals

in the parse tree of the HASKELL/DB code. This allows the Haskell type system to check

the type correctness of the embedded language. The use of a proprietary language for SQL

makes this concept less easy to use and maintain than a system based on the concrete syntax

of SQL.

6.11 Conclusions

Syntax-safe templates provide a mechanism to detect syntax errors during the generation of

the code, instead of dealing with syntax errors at compile time. It prevents that placeholders

in a template are replaced by syntactical incorrect sentences. The output code of a syntax-

safe template evaluator is a sentence of the intended output language.

The evaluation strategy is not dependent on the object language and does not need to be

changed when another object language is used. It is even possible to use object code con-

taining multiple languages.

The presented ideas are implemented in a prototype called Repleo. This prototype is used

to validate the presented approach in a couple of case studies, discussed in Chapter 7.
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Case Studies

Three case studies are presented in this chapter to show the use of the unparser-complete

metalanguage and the usability of the syntax-safe template evaluator in a practical setting.

The syntax-safe template evaluator Repleo is used for implementing these case studies.

Two case studies show a reimplementation of an existing code generator. The reimple-

mented code generators use a separated model transformation stage, resulting in less code

and better maintainable code than the original implementations. The use of separated model

transformation stage is also enforced by the unparser-complete metalanguage of Repleo.

The maintainability is achieved by less code clones in the code generator specification and

less entanglement of metacode and object code. The third case study shows the benefits

of syntax-safe templates in the context of dynamic web page generation. Syntax-safe tem-

plates provide a solution against cross-site scripting attacks.

The first case study, see Section 7.3, is a reimplementation of ApiGen [de Jong and Olivier

(2004)]. ApiGen is an application to generate a Java API for creating, manipulating and

querying tree-like data structures represented as ATerms. It covers the generation of Java

code based on the Factory pattern and Composite pattern [Gamma et al. (1995)]. The sec-

ond case study, see Section 7.4, is the reimplementation of NunniFSMGen. NunniFSMGen

is a tool to generate finite state machines from a transition table. It covers the generation of

behavioral code based on the state design pattern [Gamma et al. (1995)] for different out-

put languages. These two case studies show that the use of a two-stage architecture results

in better separation of concerns. The third case study, presented in Section 7.5, shows that

syntax-safety can improve the safety of dynamic code generation in web applications. It

covers code generation during the usage of an application, where syntax-safety is used to

reduce the possibility of security bugs. This chapter ends with an overall conclusion. First,

the different implementation architectures of code generators used by the case studies are

presented.

137

b.j.arnoldus@repleo.nl



138 Code Generation with Templates

7.1 Code Generator Architectures

This section discusses three code generator architectures: the single-stage architecture, the

two-stage architecture and the model-view-controller architecture.

7.1.1 Single-Stage Generator

The single-stage generator architecture is the less advanced approach to implement a code

generator. All processing and calculations are performed in a single module, without the

use of an intermediate representation. The code generator directly emits code when parsing

the input model. Figure 7.1 shows a visual representation of the single-stage architecture.

This architecture comes with serious drawbacks and should only be considered in simple

and small cases. First, the single-stage architecture has the drawback that the code is less

maintainable and less reusable, as all code and responsibilities are entangled in a single

component. Intermediate results and functions are not available for reuse. The same cal-

culations are performed every time they are necessary. Caching results of calculations will

break the single-stage architecture, as the cached result is a kind of intermediate represen-

tation.

Another side effect of this architecture is that code cloning can easily occur. At the moment

the same calculations are necessary at different moments, it will result in a code clone. The

single-stage architecture does not allow combining these code clones in a model transfor-

mation stage.

Last, debugging is also more difficult; since everything is done in one phase and translation

steps cannot be tested in isolation.

Input data
Code

generator

Generated

code

Fig. 7.1 Single-stage architecture.

7.1.2 Two-Stage Generator

The two-stage architecture accommodates multiple output steps, where the input data is

first translated to an intermediate representation before the final output code is generated.

The code generation process is separated in a model transformation stage and the code
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emitting stage. The intermediate representation is used by the code emitter stage. In the

case studies, this code emitter stage is implemented as a set of templates in combination

with a template evaluator. The model transformation stage is considered as one mapping,

but depending on the necessary refining, it can be implemented using a number of sub

mappings. Figure 7.2 shows the corresponding two-stage architecture.

Input data

Model

Trans-

former

Intermediate

format

Code

generator

Generated

code

Fig. 7.2 Two-stage architecture.

In a two-stage generator, the translation of input model to output code is distributed over

two components, namely a model transformation and code emitter(s). In case multiple

code emitters are used for generating the output code, an equivalent single-stage generator

has to be implemented as a set of separated code generators. It is likely, that this set of

code generators share code clones, since the same distance between the levels of abstrac-

tion of the input data and output code needs to be bridged. Compared to the single-stage

architecture, the use of a two-stage architecture allows one to reduce the number of code

clones in the generator code by specifying the non-output language specific calculations in

the model transformation. It should be the aim to design the intermediate representation

at a level of abstraction that it is not output language specific. When the intermediate rep-

resentation does not contain output language specific information, it is possible to use it

for multiple output languages. On the other hand, the intermediate representation should

be close enough to the level of abstraction of the output code. At that point of abstrac-

tion, the code emitters act as a render component with minimal calculations, while the

intermediate representation is still not output language specific. Although the intermediate

representation should not contain output language specific artifacts, the intermediate repre-

sentation can already be paradigm specific or has specific requirements of target language

concepts, which an output language should support. For example, the intermediate repre-

sentation represents a design pattern that can only be implemented using an object-oriented

programming language.

The use of a two-stage approach is already a common architecture for implementing com-
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pilers [Aho et al. (1977, 1986, 1989)]. For example, the GCC compiler1 processes the input

code and translates it to a representation belonging to the register transfer language. The

register transfer language is the intermediate representation of GCC and is used to sepa-

rate the compiler front-ends from the compiler back-ends. The intermediate representation

is translated to assembler by the back-end of GCC. The register transfer language repre-

sentations are still independent of the final target processor, so it can be used for different

compiler back-ends for different processors.

7.1.3 Model-View-Controller Architecture

The model-view-controller architecture (MVC) [Krasner and Pope (1988)] describes a de-

composition of an application in three parts: model, controller and view, with their specific

responsibility. It aims for separation of concerns to improve re-usability and maintainabil-

ity of applications. The model is responsible for actually executing the calculations for the

application domain and is distinct of the controller and view part of the application. The

controller is used to send messages to the model, and provides the interface between the

model with its associated views and the interactive user interface devices. The view deals

with everything graphical on screen, printer, files and other devices, i.e. the output of the

application. It uses data from the model component to render the output screen.

An MVC based application consists of a model and can have one or more views and con-

trollers associated with it. The re-usability of the model is improved when it does not have

knowledge of the views and controllers of the application, only the views and controllers

need to have knowledge about their model explicitly. Figure 7.3 provides a visual sketch

of the MVC architecture.

The original discussion of the MVC architecture considers an end-user application, where

the view is a (graphical) user interface and the controllers handle direct user input via key-

board or mouse. Beside the original context, the MVC architecture also fits for applications

generating code, like web applications. In MVC based web applications, the controller han-

dles the requests and the views return generated HTML pages, PDF documents, etcetera.

Often this view component of a web application is implemented using templates.

1http://gcc.gnu.org (accessed on December 18, 2011)
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Model
Encapsulates application state.

Responds to state queries.
Exposes application functionality.
Notifies views of changes.

View
Renders the models.

Requests updates from models.
Sends user gestures to controller.
Allows controller to select view.

Controller
Defines application behavior.

Maps user actions to model updates.
Selects view for response.
One for each functionality.

State query

State change

View selection

Change Notification

User Gestures

Fig. 7.3 Model-view-controller architecture.

7.2 Metrics

The three case studies discussed in this chapter will be compared using volume metrics.

These metrics quantify the volume differences of the re-implementations in comparison

with the original code generators. The volume is measured using the lines of code metric.

This metrics gives a rough indication of the size of the code.

The lines of code metric does not give accurate information about the amount of text in the

source code, therefore the number of tokens is also counted. Instead of characters, tokens

are counted, as they abstract from the length of identifiers. Independent of its length each

identifier is parsed as one token, otherwise the length of the identifiers could influence the

comparison.

By nature, metaprograms contain a lot of non-alphanumeric characters to switch from ob-

ject code to metacode and vice versa. These characters have a negative impact on the

readability of the code. In order to quantify the readability of the code the number of

non-alphanumeric characters used in the code is measured.

The grammar for quantifying the amount of text contains the following lexical classes (see

the grammar of Figure 7.4 for the definition of them):

• ID - represents identifiers and keywords in Java, C, SDF, ASF and shell scripts;

• Bracket - represents brackets, and initializes a token per bracket;
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• NonID - represents non-alphanumeric character sequences, excluding brackets;

• WS - represents sequences of white space characters.

The grammar of Figure 7.4 is used to parse the source code of the code generator imple-

mentations. The result of the parser is a parse tree with a root node Tokens and for each

token a child node. A function iterates over this list to count the occurrences of the differ-

ent kinds of nodes. The number of non-alphanumeric characters is the sum of the number

of Bracket tokens and NonID tokens. They are parsed as different nonterminals, since

Bracket detects single characters and NonID detects the longest match for a character

sequence.

These metrics have a lot in common with the Halstead complexity metrics [Halstead

(1977)], based on the number of (distinct) operands and (distinct) operators. Unfortunately,

these metrics could not be used directly as templates contain metacode and object code. It

is not clear how to define operands and operators in a metaprogramming situation. Consid-

ering the object code fragments as operands is not sufficient as depending of the execution

stage they are considered as operand or operator. The metrics used in this chapter are at

a basic lexical level, which not consider the differences between metalanguage and object

language.

1 module Tokens

3 e x p o r t s
s o r t s Text B r a c k e t NonID ID WS

5 c o n t e x t−f r e e s t a r t −symbols Text
c o n t e x t−f r e e s y n t a x

7 ( B r a c k e t | NonID | ID | WS)∗ −> Text

9 l e x i c a l s y n t a x
[A−Za−z0−9\∗\ ’\$ ]+ −> ID

11 [\”\{\}\[\]\<\>\(\)] −> B r a c k e t
˜[\”\{\}\[\]\<\>\(\)\ \ t \n\rA−Za−z0−9\∗\ ’\$ ]+

13 −> NonID
[\ \ t \n\ r ]+ −> WS

15
c o n t e x t−f r e e r e s t r i c t i o n s

17 NonID −/− ˜[\”\{\}\[\]\<\>\(\)\ \ t \n\rA−Za−z0−9\∗\ ’\$ ]
WS −/− [\ \ t \n\ r ]

19 ID −/− [A−Za−z0−9\∗\ ’\$ ]

Fig. 7.4 Grammar for the token counter.
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7.3 ApiGen

This case study covers the reimplementation of the Java back-end of ApiGen [de Jong

and Olivier (2004); van den Brand et al. (2005)]. ApiGen is a tool to generate a Java or C

application programming interfaces (API) for creating, manipulating and querying tree-like

data structures represented as ATerms [van den Brand et al. (2000)]. The API generated

by ApiGen is based on the Factory pattern and Composite pattern [Gamma et al. (1995)].

The reimplementation of ApiGen makes use of the two-stage architecture and syntax-safe

templates.

7.3.1 Introduction

ApiGen finds its origin in the ASF+SDF Meta-Environment [van den Brand et al. (2001)],

an interactive development environment for program analysis and transformations. The

ASF+SDF Meta-Environment provides various language processing components, such as a

parser and a term rewrite engine. Data between these components is exchanged via ATerms,

where these components expect that ATerms belong to a certain regular tree grammar. This

regular tree grammar was not explicitly defined, but dictated by manually specified func-

tions in an API accepting the ATerm. Synchronizing these manually defined API’s for the

various components is a complex maintenance issue [de Jong and Olivier (2004)].

Before: After:

Application

code

Handcrafted

ATerm

manipulation

ATerms

Application

code

Generated,

typed ADT

library

ATerms

ADT

definition

SDF

definition

generated

generated

Fig. 7.5 Overview of an application before and after introduction of a generated API.

ApiGen solves this maintenance problem by generating an API for ATerms from a regu-

lar tree grammar or concrete syntax definition (SDF). It translates a regular tree grammar,

specified in a format called annotated data-type or in short ADT, to an API for manipulat-

ing, reading and creating ATerms belonging to the language of the regular tree grammar.

b.j.arnoldus@repleo.nl



144 Code Generation with Templates

Generating an API from the ADT removes the need of error-prone handcrafted ATerms.

The generated API also provides more safety when manipulating trees, since the node ob-

jects are not typed as a generic node, but typed as its alternative, which is a subclass of

its producing nonterminal. A schematic overview is shown in Figure 7.5. This figure also

shows that an ADT can be derived from an SDF specification. The translation of SDF to

ADT is out of the scope of this case study and the original tool sdf2-to-adt is used to

generate an ADT from an SDF grammar.

7.3.2 Annotated Data Type

The ADT format is a formalism to define a set of legal ATerms, comparable to schema for-

malisms such as Document Type Definition and XML Schema for XML documents [Bex

et al. (2004)]. The format can be classified as a regular tree grammar formalism, allowing

trees with infinite arity [Murata et al. (2005)]. Trees with infinite arity may contain sym-

bols used with different arities, while the symbols in the previously discussed trees have a

fixed arity. The ADT format finds it origin as an intermediate representation between an

SDF definition and the generated API for manipulating parse trees belonging to that SDF

definition. In accordance with the structure of these parse trees, three types of rules are

supported:

• Production rules: constructor(n, c, ATerm), where n is the nonterminal, c the

alternative and ATerm the corresponding pattern. The couple of n and c must be unique

in an ADT definition;

• Lists: list(n, n’), where n is the nonterminal and n’ the element type;

• Separated lists: separated-list( n, n’, [ATerm+]), where n is the nonterminal

and n’ the element type and ATerm+ is a list of allowed separators.

1 [
home (

3 name ( ” Arno ldus ” ) ,
v o i c e (020114556)

5 ) ,
work (

7 name ( ” U n i v e r s i t y ” ) ,
f a x (020114520)

9 )
]

Fig. 7.6 An instance of a phone book ATerm.
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The running example for this case study is a phone book data-structure, see Figure 7.6

for an example. It contains a list of entries, where the type of an entry can be person or

company. Both person and company have the fields name and phone number. The phone

number can be either a voice number or a fax number. Figure 7.7 shows the ADT definition

for this phone book data-structure.

[
2 l i s t ( PhoneBook , E n t r y ) ,

c o n s t r u c t o r ( Ent ry , Home ,
4 home(<p e r s o n ( Name)>,<phone ( PhoneNumber )>) ) ,

c o n s t r u c t o r ( Ent ry , Work ,
6 work(<company ( Name)>,<phone ( PhoneNumber )>) ) ,

c o n s t r u c t o r ( Name , Name , name(< s t r i n g ( s t r )>) ) ,
8 c o n s t r u c t o r ( PhoneNumber , Voice , v o i c e (< i n t e g e r ( i n t ) > ) ) ,

c o n s t r u c t o r ( PhoneNumber , Fax , f a x (< i n t e g e r ( i n t ) >))
10 ]

Fig. 7.7 The ADT definition for the phone book example.

It should be noted that the ADT formalism does not support the explicit definition of start

symbols. Instead of defining a start symbol, ApiGen generates for all nonterminals a func-

tion to parse trees using that nonterminal as start symbol.

7.3.3 From ADT to an API

The code generated by ApiGen contains two different components:

• A data structure based on the regular tree grammar.

• A factory to create and manipulate trees stored in that data structure.

These components of the generated API are based on the composite pattern and factory

pattern as documented in [Gamma et al. (1995)].

7.3.3.1 Data Structure

The data structure implementation provides a type structure to represent a tree in the form

of objects connected to each other via a has-a relationship. The nonterminals in the regular

tree grammar are implemented as abstract classes and the production rules are implemented

as concrete subclasses of that nonterminal.
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Component
Operation ()

Add (Component)
Remove (Component)
GetChild (int)

Client

Leaf
Operation ()

Composite
Operation ()

Add (Component)
Remove (Component)
GetChild (int)

foreach child in chil-

dren child.Operation()

children

Fig. 7.8 Composite design pattern.

ApiGen generates the classes based on the composite pattern, see Figure 7.8, on top of

the generic Java ATerm library. The connection between the ATerm Library and the con-

crete classes representing the nodes contains a number of inheritance levels. Two classes

AbstractType and AbstractListType are generated to form the bridge between the

generated API and the ATerm library. The first extends the class ATermApplImpl and the

second the class ATermListImpl, which are members of the ATerm library representing an

ATerm node and ATerm list node. The AbstractType and AbstractListType contain

the default methods provided by every subclass of the generated API. The next layer gener-

ated by ApiGen is the abstract classes representing the nonterminals of the ADT. For each

nonterminal an abstract class with the name of the nonterminal is generated. This gener-

ated abstract class extends AbstractType or in case the nonterminal represents a list, the

abstract class extends AbstractListType. The nonterminal class contains the definition

and default behavior of the accessor methods for that nonterminal. Figure 7.9 shows the

core of the generated class for the nonterminal PhoneNumber.

The final layer generated by ApiGen is the concrete classes for the different alternatives of a

nonterminal. For each alternative a class with the name of the alternative is generated. This

class extends the abstract class of the nonterminal belonging to the alternative, where all the

accessor methods are implemented. These classes are used to instantiate trees belonging

to the tree language defined by the ADT. Figure 7.10 shows the concrete class for the

alternative Fax of the nonterminal PhoneNumber generated by ApiGen. In case of the

alternative for Voice the same listing is generated, where Fax is replaced by Voice.
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a b s t r a c t p u b l i c c l a s s PhoneNumber e x t e n d s A b s t r a c t T y p e {
2

p u b l i c PhoneNumber ( . . . ) {
4 s u p e r ( . . . ) ;

}
6

p u b l i c b o o l e a n i s E q u a l ( PhoneNumber p e e r ) {
8 r e t u r n s u p e r . i s E q u a l ( p e e r ) ;

}
10

p u b l i c b o o l e a n i sSor tPhoneNumber ( ) {
12 r e t u r n t r u e ;

}
14

p u b l i c b o o l e a n i s V o i c e ( ) { r e t u r n f a l s e ; }
16

p u b l i c b o o l e a n i s F a x ( ) { r e t u r n f a l s e ; }
18

p u b l i c b o o l e a n h a s I n t e g e r ( ) { r e t u r n f a l s e ; }
20

p u b l i c i n t g e t I n t e g e r ( ) {
22 throw new U n s u p p o r t e d O p e r a t i o n E x c e p t i o n (

” Th i s PhoneNumber has no i n t e g e r ” ) ;
24 }

26 p u b l i c PhoneNumber s e t I n t e g e r ( i n t i n t e g e r ) {
th row new I l l e g a l A r g u m e n t E x c e p t i o n (

28 ” I l l e g a l a rgument : i n t e g e r ” ) ;
}

30
}

Fig. 7.9 Snippet of the PhoneNumber class.

7.3.3.2 Factory

The second generated component is a factory, see Figure 7.11, to instantiate trees based

on the generated data structure. This generated factory provides methods to create, parse,

manipulate and export trees conforming to the ADT. It is obligatory to use a factory for

instantiating ATerm based trees in order to provide maximal subterm sharing; a mecha-

nism to ensure that only one instance of any subterm exists in memory. The Java ATerm

library provides this factory by the implementation called “ATermFactory”. In case an

API for an ATerm based tree language is generated, a factory must be created supporting

the instantiation of trees for that tree language. Therefore, ApiGen generates a layer on top

of the ATermFactory containing make methods to instantiate (sub)trees using the classes

of the generated data structure.
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1 p u b l i c c l a s s Fax e x t e n d s PhoneNumber {

3 p u b l i c Fax ( . . . ) { s u p e r ( . . . ) ; }
p r i v a t e s t a t i c i n t i n d e x i n t e g e r = 0 ;

5
p u b l i c s h a r e d . S h a r e d O b j e c t d u p l i c a t e ( ) { . . . }

7
p u b l i c b o o l e a n e q u i v a l e n t ( s h a r e d . S h a r e d O b j e c t p e e r )

9 { . . . }

11 p r o t e c t e d a t e rm . ATermAppl make (
a t e rm . AFun fun , a t e rm . ATerm [ ] a rgs ,

13 a te rm . ATermList annos ) {
r e t u r n

15 g e t P h o n e b o o k F a c t o r y ( )
. makePhoneNumber Fax ( fun , a rgs , annos ) ;

17 }

19 p u b l i c a t e rm . ATerm toTerm ( ) {
i f ( t e rm == n u l l ) {

21 te rm = g e t P h o n e b o o k F a c t o r y ( ) . toTerm ( t h i s ) ;
}

23 r e t u r n te rm ;
}

25
p u b l i c b o o l e a n i s F a x ( ) { r e t u r n t r u e ; }

27
p u b l i c b o o l e a n h a s I n t e g e r ( ) { r e t u r n t r u e ; }

29
p u b l i c phonebook . t y p e s . PhoneNumber s e t I n t e g e r ( i n t

i n t e g e r ) {
31 r e t u r n ( phonebook . t y p e s . PhoneNumber ) s u p e r . se tArgumen t (

g e t F a c t o r y ( ) . makeIn t ( i n t e g e r ) , i n d e x i n t e g e r ) ;
33 }

35 p u b l i c i n t g e t I n t e g e r ( ) {
r e t u r n ( ( a t e rm . ATermInt )

37 getArgument ( i n d e x i n t e g e r ) ) . g e t I n t ( ) ;
}

39
p u b l i c a t e rm . ATermAppl se tArgumen t ( a t e rm . ATerm arg , i n t i )

41 { . . . }

43 p r o t e c t e d i n t h a s h F u n c t i o n ( ) { . . . }

45 }

Fig. 7.10 Snippet of the Fax alternative for the PhoneNumber nonterminal.
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Creator
factoryMethod (): Product

ConcreteCreator
factoryMethod (): Product

Product

Fig. 7.11 Factory design pattern.

The generated factory provides special make methods for the nodes defined in the ADT.

These make methods abstracts from the ATerm library, as it is not necessary to know the

underlying ATerm representation to create trees defined by the ADT. When called, these

make methods instantiate nodes based on the classes of the generated data structure and

encapsulate the administration to achieve maximal subterm sharing. Maximal subterm

sharing is a technique to reduce the memory footprint of terms by only storing unique

terms in memory. In case of list types, the factory class also provides the list operations

reverse, concat and append. The factory class also contains methods to instantiate a

tree from a string, to serialize it from a tree to a string, and cast methods to transform a

tree to a generic ATerm representation and vice versa. Figure 7.12 shows a snippet of the

generated factory for the phone book example.

1 p u b l i c phonebook . t y p e s . phonenumber . Voice
makePhoneNumber Voice ( i n t i n t e g e r ) {

3 a te rm . ATerm [ ] a r g s = new a te rm . ATerm [ ] {
f a c t o r y . makeIn t ( i n t e g e r )

5 } ;
r e t u r n makePhoneNumber Voice (

7 fun PhoneNumber Voice , a rgs , f a c t o r y . getEmpty ( ) ) ;
}

9
p u b l i c phonebook . t y p e s . phonenumber . Voice

11 makePhoneNumber Voice ( i n t i n t e g e r ,
a t e rm . ATermList annos ) {

13 a te rm . ATerm [ ] a r g s = new a te rm . ATerm [ ] {
f a c t o r y . makeIn t ( i n t e g e r )

15 } ;
r e t u r n makePhoneNumber Voice (

17 fun PhoneNumber Voice , a rgs , annos ) ;
}

Fig. 7.12 Snippet of the generated factory.
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7.3.4 Original Code Generator

The original Java implementation of ApiGen is based on the two-stage architecture. The

first stage is the ADT reader. It reads an ADT specification, containing the specification of

the tree structure, from file. The ADT is an ATerm and as a result a generated API imple-

ments the in-memory representation of an ADT. The ADT reader calls the factory to instan-

tiate the in-memory representation of an ADT file. Besides reading the ADT file, the first

stage also executes a couple of model transformations. For example, the constructor rules

in the ADT contain an ATerm pattern belonging to that node. The model transformation

extracts the ATerm placeholders to collect the fields for that constructor rule. Figure 7.13

shows the field collection method of the model transformation. It is a recursive function

traversing an ATerm pattern and instantiating a field object for every ATerm placeholder

occurring in the pattern. For example the fields company and phone with their respec-

tive arguments Name and PhoneNumber are extracted from the ATerm pattern of the work

alternative

work(<company(Name)>,<phone(PhoneNumber)>)

The second stage of ApiGen is responsible for generating the output code. A

code emitter is written for every kind of class generated by ApiGen. ApiGen con-

tains seven code emitter classes: FactoryGenerator, AbstractListGenerator,

AbstractTypeGenerator, ListTypeGenerator, SeparatedListTypeGenerator,

TypeGenerator and AlternativeGenerator. The emitter classes are implemented as

println generators, which results in a mix of Java used as object code and Java used

as metacode. Figure 7.14 shows the genMakeMethod method of the FactoryGenerator

class. This method is responsible for generating the make methods of the factory class, as

shown in Figure 7.12.

For each alternative declared by the constructor rules in the ADT a set of make methods

are generated. Considering the code snippet of Figure 7.14, the following actions are exe-

cuted. The first statements, in lines 3-9, construct the identifiers used in the generated code

by calling a number of helper functions. At line 11-12, the output code is instantiated by

printing a string to the output buffer, internally redirect to the output file. The if-statement

is used to select the generation of a forwarded make method in case an imported ADT mod-

ule defines the factory. Helper functions such as buildActualTypedAltArgumentList

are used to reduce code clones in the generator self. At line 31 an if-statement is used to

ensure the separator token is only generated when the alternative has fields.
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p r i v a t e vo id e x t r a c t F i e l d s ( ATerm t ) {
2 AFun fun ;

ATermAppl a p p l ;
4 ATermList l i s t ;

s w i t c h ( t . ge tType ( ) ) {
6 c a s e ATerm . APPL :

a p p l = ( ATermAppl ) t ;
8 fun = a p p l . getAFun ( ) ;

f o r ( i n t i = 0 ; i < fun . g e t A r i t y ( ) ; i ++) {
10 e x t r a c t F i e l d s ( a p p l . ge tArgument ( i ) ) ;

}
12

b r e a k ;
14 c a s e ATerm . LIST :

l i s t = ( ATermList ) t ;
16 f o r ( i n t i = 0 ; ! l i s t . i sEmpty ( ) ; i ++) {

e x t r a c t F i e l d s ( l i s t . g e t F i r s t ( ) ) ;
18 l i s t = l i s t . g e t N e x t ( ) ;

}
20 b r e a k ;

c a s e ATerm .PLACEHOLDER :
22 ATerm ph = ( ( ATermPlaceho lde r ) t ) . g e t P l a c e h o l d e r ( ) ;

i f ( ph . ge tType ( ) == ATerm . LIST ) {
24 . . .

a d d F i e l d ( f i e l d I d , f i e l d T y p e ) ;
26 } e l s e i f ( ph . ge tType ( ) == ATerm . APPL) {

. . .
28 a d d F i e l d ( f i e l d I d , f i e l d T y p e ) ;

} e l s e {
30 throw new

Run t imeExcep t ion ( ” i l l e g a l f i e l d spec : ” + t ) ;
32 }

b r e a k ;
34 d e f a u l t :

b r e a k ;
36 }

}

Fig. 7.13 Extraction of fields from ATerm pattern.
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1 p r i v a t e v o id genMakeMethod ( Type type ,
A l t e r n a t i v e a l t , b o o l e a n f o r w a r d i n g , S t r i n g moduleName ) {

3 J a v a G e n e r a t i o n P a r a m e t e r s params =
g e t J a v a G e n e r a t i o n P a r a m e t e r s ( ) ;

5 S t r i n g a l t C l a s s N a m e =
A l t e r n a t i v e G e n e r a t o r . q u a l i f i e d C l a s s N a m e (

7 params , type , a l t ) ;
S t r i n g makeMethodName = ”make” + c o n c a t T y p e A l t ( type , a l t ) ;

9 S t r i n g funVar = f u n V a r i a b l e ( type , a l t ) ;

11 p r i n t ( ” p u b l i c ” + a l t C l a s s N a m e
+ ’ ’ + makeMethodName + ” ( ” ) ;

13 p r i n t F o r m a l T y p e d A l t A r g u m e n t L i s t ( type , a l t ) ;
p r i n t l n ( ” ) { ” ) ;

15 i f ( ! f o r w a r d i n g ) {
p r i n t (

17 ” a te rm . ATerm [ ] a r g s = new a te rm . ATerm [ ] { ” ) ;
p r i n t A c t u a l T y p e d A r g u m e n t L i s t ( type , a l t ) ;

19 p r i n t l n ( ” } ; ” ) ;
p r i n t l n ( ” r e t u r n ” + makeMethodName +

21 ” ( ” + funVar + ” , a rgs , f a c t o r y . getEmpty ( ) ) ; ” ) ;
} e l s e {

23 . . .
}

25 p r i n t l n ( ” } ” ) ;
p r i n t l n ( ) ;

27
p r i n t ( ” p u b l i c ” + a l t C l a s s N a m e

29 + ’ ’ + makeMethodName + ” ( ” ) ;
p r i n t F o r m a l T y p e d A l t A r g u m e n t L i s t ( type , a l t ) ;

31 i f ( t y p e . a l t F i e l d I t e r a t o r ( a l t . g e t I d ( ) ) . hasNext ( ) )
p r i n t ( ” , ” ) ;

33 p r i n t l n ( ” a t e rm . ATermList annos ) { ” ) ;
i f ( ! f o r w a r d i n g ) {

35 . . .
} e l s e {

37 . . .
}

39 p r i n t l n ( ” } ” ) ;
p r i n t l n ( ) ;

41 }

Fig. 7.14 Small part of the ApiGen code emitter.

Although, the original ApiGen implementation is based on a two-stage architecture, the

distribution of responsibilities for the model transformation and code emitter is not optimal.

Some model transformations are executed during code generation. For example Figure 7.15

shows a model transformation task inside the AlternativeGenerator class at line 4. This
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method genAltFieldIndexMembers is called for every type defined in the ADT. The type

object contains all fields possible for that type. When this method is called, the statement

at line 4 fetches all fields for the current alternative of the type. This filtering should be

done at model transformation phase, for example the class Alternative should provide a

list of its associated fields. Although this filtering seems innocent, it is a call back to the

model, so a wrong implementation of the altFieldIterator could change the model.

The altFieldIterator is a member of the type Type and it has direct access to the

private fields of Type. It is possible to change the values of these private fields, resulting in

a change of the model during code generation. Furthermore, genAltFieldIndexMembers

cannot be expressed in Repleo, as a compare operator and a mechanism to store values is

necessary.

1 p r i v a t e vo id genAl tF i e ld IndexMember s ( Type type ,
A l t e r n a t i v e a l t ) {

3 I t e r a t o r <F i e l d> f i e l d s =
t y p e . a l t F i e l d I t e r a t o r ( a l t . g e t I d ( ) ) ;

5 i n t a r g n r = 0 ;
w h i l e ( f i e l d s . hasNext ( ) ) {

7 F i e l d f i e l d = f i e l d s . n e x t ( ) ;
S t r i n g f i e l d I d = g e t F i e l d I n d e x ( f i e l d . g e t I d ( ) ) ;

9 p r i n t l n ( ” p r i v a t e s t a t i c i n t ” + f i e l d I d
+ ” = ” + a r g n r + ” ; ” ) ;

11 a r g n r ++;
}

13 }

Fig. 7.15 Example of model transformation in code emitter.

7.3.5 Reimplemented Code Generator

ApiGen is reimplemented using the two-stage architecture with a strict separation between

the model transformation stage and code emitter stage. The model transformation is de-

fined as a set of rewrite rules using a term rewriting system (ASF+SDF) and the code

emitter is implemented using syntax-safe templates. Term rewriting provides a powerful

computational paradigm to express these transformations, as they are tree rewrite rules.

Figure 7.16 shows the architecture of the reimplementation. The rectangular shapes denote

(intermediate) files and the circular shapes denote the transformation engines. The model

transformation reads the ADT input model and computes the intermediate representation,

also an ATerm. The second stage consists of a set of templates accepting the intermediate

b.j.arnoldus@repleo.nl



154 Code Generation with Templates

representation as input data.

ADT
Trans-

former

Intermediate

format
Repleo

templates

Java code

Fig. 7.16 Generation scheme: from ADT to code.

The code generated from the ADT definition exists of a data structure based on the com-

posite pattern and a factory to instantiate trees. The intermediate representation already

implements these design patterns. It contains a list of types, categorized into type and

list. These types represent the nonterminals and are implemented as abstract classes, see

Figure 7.9. The concrete classes of these abstract classes are defined by the alternatives of

these types, see Figure 7.10.

The intermediate representation of the phone book example is shown in Figure 7.18. One

can notice cloning of fields between the level of the type node and alternative nodes. The

unparser-complete metalanguage is not capable to calculate the fields for an alternative; as

a result the field nodes are stored multiple times in the input data. Since this intermediate

representation is also used for the generation of the factory class, the alternatives contain

an ATerm pattern corresponding with the node.

The model transformation is responsible for translating the ADT input model to the inter-

mediate representation. Considering the ADT of Figure 7.7 and the intermediate represen-

tation of Figure 7.18, the model transformation has collected all constructor rules for a type

in a single node, where the different constructor rules are represented as alternatives for

that type. Besides collecting the types, the model transformation extracts the fields from

the ATerm pattern specified in each constructor rule. Additionally the ATerm pattern is

translated to the pattern used in the factory class, i.e. the placeholders are replaced with

generic ATerm placeholders.

Figure 7.17 shows the extraction of fields for an ATerm pattern belonging to an alterna-

tive for a type. It is the reimplementation of the code of Figure 7.13 using ASF+SDF. A

traversal is configured to traverse the ATerm pattern in an ADT production rule, where this

rewrite rule declares a match on an ATerm placeholder. The identifiers having a dollar-sign

prefix are declared as variables. The traversal stops when it detects an ATerm placeholder,

specified by the pattern < $IdCon($IdCon’) >. At a match it returns an instantiated field
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for the intermediate representation. Note, the $NatCon is a helper argument in order to

provide an index number to the field.

1 g e t F i e l d s F o r A l t (< $IdCon ( $IdCon ’ ) >, < $ F i e l d A l t ∗ , $NatCon >) =
<

3 $ F i e l d A l t ∗ ,
f i e l d ( unpa r se−to−s t r i n g ( $IdCon ) ,

5 g e t T y p e I m p l e m e n t a t i o n ( $IdCon ’ ) ,
$NatCon ) ,

7 $NatCon + 1
>

Fig. 7.17 Extraction of fields from ATerm pattern.

The second stage is responsible for the actual code generation and is implemented using

syntax-safe templates. Seven templates are defined. The original implementation comes

also with seven emitter classes, where the templates share the same tasks. Figure 7.19

shows a snippet of the template generating the factory class. This snippet is responsible

for generating the make methods, see Figure 7.12 for the result when using the input data

of Figure 7.18. These methods are generated for each alternative of each type. The loop

over the alternatives is expressed by two match-replace placeholders. This example also

uses the built-in metalanguage functions _lc and _cc. These are shorthand notations for

transforming a string to lowercase or camel-case, i.e. the first letter is capitalized. From

a Puritan point of view, these functions should not be available in the metalanguage. The

different layouts of identifiers should be stored in the input data. In practice, this would

lead to a lot of variants of lexical layouts of identifiers in the input data, while most string

manipulations are necessary to comply with the layout convention of the object language2.

The availability of these functions makes it possible to express the layout requirements in

the template, instead of having them in the input data.

2It is possible to express the semantics of the string manipulation functions in a couple of subtemplates in
combination with match-replace placeholders. The implementation would be a variant of the template given in
Section 4.2.5.
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[
2 t y p e (

” E n t r y ” ,
4 [

a l t e r n a t i v e ( ”Home” , 2 , ”home(< term>,<term >)” ,
6 [

f i e l d ( ” p e r s o n ” , n o t r e s e r v e d ( ” Name ” ) , 0 ) ,
8 f i e l d ( ” phone ” , n o t r e s e r v e d ( ” PhoneNumber ” ) , 1 )

] ) ,
10 a l t e r n a t i v e ( ”Work” , 2 , ” work(< term>,<term >)” ,

[
12 f i e l d ( ” company ” , n o t r e s e r v e d ( ” Name ” ) , 0 ) ,

f i e l d ( ” phone ” , n o t r e s e r v e d ( ” PhoneNumber ” ) , 1 )
14 ] )

] ,
16 [

f i e l d ( ” p e r s o n ” , n o t r e s e r v e d ( ” Name ” ) ) ,
18 f i e l d ( ” phone ” , n o t r e s e r v e d ( ” PhoneNumber ” ) ) ,

f i e l d ( ” company ” , n o t r e s e r v e d ( ” Name ” ) )
20 ]

) ,
22 t y p e (

”Name ” ,
24 [

a l t e r n a t i v e ( ”Name” , 1 , ” name(< s t r >)” ,
26 [

f i e l d ( ” s t r i n g ” , r e s e r v e d ( s t r ) , 0 )
28 ] )

] ,
30 [

f i e l d ( ” s t r i n g ” , r e s e r v e d ( s t r ) )
32 ] ) ,

t y p e (
34 ” PhoneNumber ” ,

[
36 a l t e r n a t i v e ( ” Voice ” , 1 , ” v o i c e (< i n t >)” ,

[
38 f i e l d ( ” i n t e g e r ” , r e s e r v e d ( i n t ) , 0 )

] ) ,
40 a l t e r n a t i v e ( ” Fax ” , 1 , ” f a x (< i n t >)” ,

[
42 f i e l d ( ” i n t e g e r ” , r e s e r v e d ( i n t ) , 0 )

] )
44 ] ,

[
46 f i e l d ( ” i n t e g e r ” , r e s e r v e d ( i n t ) )

]
48 ) ,

l i s t ( ” PhoneBook ” , n o t r e s e r v e d ( ” E n t r y ” ) )
50 ]

Fig. 7.18 The intermediate representation of the phone book.
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. . .
2 t e m p l a t e [

. . .
4 <: match :>

<: [ t y p e ( $ type , $ a l t e r n a t i v e s , $ f i e l d s ) , $ t y p e s ] =:>
6 <: match $ a l t e r n a t i v e s :>

<: [ a l t e r n a t i v e ( $a l tname , $ a r i t y , $ p a t t e r n , $ a l t f i e l d s ) ,
8 $ a l t e r n a t i v e s ] =:>

p u b l i c <: $apiname :> . t y p e s .< : l c ( $ t y p e ):> .< : c c ( $ a l t n a m e ):>
10 <: ”make” + $ t y p e + ” ” + c c ( $ a l t n a m e ) :>

( <: genArguments ( $ a l t f i e l d s ) :> ) {
12 a te rm . ATerm [ ] a r g s =

new a te rm . ATerm [ ] { <: genArray ( $ a l t f i e l d s ) :>
} ;

14 r e t u r n <: ”make” + $ t y p e + ” ” + c c ( $ a l t n a m e ) :>(
<: ” f u n ” + $ t y p e + ” ” + c c ( $ a l t n a m e ) s o r t : Expr :> ,

16 a rgs , f a c t o r y . getEmpty ( ) ) ;
}

18
p u b l i c <: $apiname :> . t y p e s .< : l c ( $ t y p e ):> .< : c c ( $ a l t n a m e ):>

20 <: ”make” + $ t y p e + ” ” + c c ( $ a l t n a m e ) :>
(<: genArguments ( $ a l t f i e l d s ) :> ,

22 a t e rm . ATermList annos ) {
a t e rm . ATerm [ ] a r g s =

24 new a te rm . ATerm [ ] { <: genArray ( $ a l t f i e l d s ) :> } ;
r e t u r n <: ”make” + $ t y p e + ” ” + c c ( $ a l t n a m e ) :>

26 ( <: ” f u n ” + $ t y p e + ” ” + c c ( $ a l t n a m e ) s o r t : Expr :> ,
a rg s , annos ) ;

28 }
. . .

30 <: $ a l t e r n a t i v e s s o r t : ClassBodyDec∗:>
<: [ ] =:>

32 <: end :>
<: $ t y p e s s o r t : ClassBodyDec∗:>

34 . . .
<: [ ] =:>

36 <: end :>
. . .

38 ]
. . .

Fig. 7.19 Small part of the ApiGen code emitter.

7.3.6 Difference Old and New Implementation

The original implementation and reimplementation is compared on architectural level and

code level. On architectural level, both implementations are based on the two-stage archi-

tecture. The original implementation does not have a concrete syntax for the intermediate

representation. It uses a class structure for the objects to store the derived information. The

b.j.arnoldus@repleo.nl



158 Code Generation with Templates

separation between the two-stages is not strict as the code emitters call the model trans-

formation during the generation of the code. Calling the model transformation from the

code emitter is impossible in the reimplemented ApiGen. Only a one-way link between the

model transformation and the templates exists. For example, the restricted metalanguages

forces to specify the calculation performed in the code emitter method of Figure 7.15 in the

model transformation stage.

The original ApiGen implementation is written in Java, while the reimplementation uses

ASF+SDF for the model transformation and syntax-safe templates for the code emitters.

The model transformation is a function reading the ADT, which is a tree, with as output the

intermediate representation, which is also a tree. Tree rewriting can be expressed compactly

using a term rewriting system, especially since the used term rewriting system ASF+SDF

has native support for traversal functions [van den Brand et al. (2003)]. The model trans-

formation phase in the reimplementation is specified with a total of 21 functions based on

54 (sub) equations. The original model transformation implementation is more verbose

and has a total of 3112 lines of code (without blank lines) spread over 34 files. An exam-

ple of the reduction of lines of code is the refactoring of the snippet of Figure 7.13 to the

reimplementation shown in Figure 7.17.

In the original implementation the code emitter stage is implemented using println()

statements. The use of templates in the reimplementation results in a smaller implemen-

tation in volume. The template evaluator covers common tasks, like file handling and

separator handling.

The Table 7.1 shows the result of measuring the old implementation of ApiGen and the

reimplementation. All 57 files of the original ApiGen implementation3 are measured. The

total number of files of the reimplementation is 14, including grammar definitions, model

transformations, shell script and templates.

Considering Table 7.1, the number of lines of code of the reimplementation is almost a

third of the original implementation and the number of tokens is reduced 2.5 times. The

reduction of the volume of the code is a result of three differences between the original

implementation and the reimplementation. First the model transformation is expressed in

a term rewriting formalism instead of Java. Second, the original implementation uses a

generated API for the ADT format, while the reimplementation only contains a grammar

definition for it. The last reason is that original implementation contains code for output

file handling, which is encapsulated by the template evaluator in the reimplementation.

3The original implementation also provided a C code emitter. These classes are removed from the project.
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The ratio’s between lines of code and tokens is not improved. The number of tokens per line

of code in the reimplementation is even higher than the original implementation. Also the

number of non-alphanumeric tokens per line is increased by 43% in the reimplementation.

The original implementation of ApiGen has a limited number of methods containing string

constants with object code. The authors of ApiGen have aimed for the reduction of code

clones on the level of the object code specification. Having less strings results in a lower

level of non-alphanumeric tokens. At first sight, the original implementation seemed better

readable than the reimplementation. However, at the moment that one notices that the

reimplementation contains Java code in string constants, it will be harder to read and harder

to understand the code it generates. The object code in ApiGen is specified as small chunks

and one must analyze the flow graph of the code generator to understand how the output

code is constructed [Christensen et al. (2003)].

Table 7.1 Metrics of ApiGen and the reimplementation.

Metric Original Reimplementation

Lines of Code 8,789 2,975

Lines of Code (without blank lines) 7,296 2,361

Tokens 84,230 33,254

Alphanumeric tokens 25,986 7,572

Non-alphanumeric tokens 33,704 15,669

White space tokens 24,540 10,013

Average number of tokens per line 11.5 14.08

Average number of non-alphanumeric tokens per line 4.62 6.64

7.3.7 Evaluation

The separation of concerns between the model transformation and the code emitters is im-

proved in the reimplementation. The connection from the code emitter stage to the model

transformations is also absent. The use of formalisms better suitable for the intended task,

i.e. term rewriting for the model transformation and templates for the code emitters, results

in a more compact definition of the code generator and it results in better maintainabil-

ity [Spinellis (2001)]. The number of lines of code of the reimplementation is almost a

third of the original implementation and the number of tokens is reduced 2.5 times, without

removing functionality.
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7.4 NunniFSMGen

NunniFSMGen is a tool to translate a specification of a finite state machine into an imple-

mentation for Java, C or C++. It uses the state design pattern [Gamma et al. (1995)] to

implement the state machine in the different output languages.

First an overview of the original approach of NunniFSMGen is given. Next the reimple-

mentation of NunniFSMGen is presented. The reimplementation of NunniFSMGen uses

a parser, model transformation and templates. At the end the original implementation is

compared to the new template based implementation.

7.4.1 Finite State Machines

Before discussing the input format of NunniFSMGen, a formal definition of finite state

machines is given. Hereafter the input format of NunniFSMGen is related to the formal

concept of finite state machines [Aho et al. (1986)].

Definition 7.4.1 (Deterministic finite state machine). A deterministic finite state machine

is a 5-tuple M = ⟨Σ ,Q,q0,δ ,F⟩, where:

Σ is the input alphabet,

Q is a finite, non-empty set of states,

q0 is an initial state and q0 ∈ Q,

δ is the state-transition function: δ : Q×Σ → Q,

F is the set of final states, a (possibly empty) subset of Q.

Example 7.4.1. Let M be a finite state machine, where

Σ = {activate,deactivate,hotenough,maintenance},
Q = {STANDBY,WARMINGUP,ERROR,MAINTENANCE},
q0 = STANDBY, F = {}

and the transition function:

δ (STANDBY,activate) = WARMINGUP

δ (STANDBY,hotenough) = ERROR

δ (STANDBY,maintenance) = MAINTENANCE

δ (STANDBY,deactivate) = STANDBY

δ (WARMINGUP,activate) = WARMINGUP
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δ (WARMINGUP,deactivate) = STANDBY

δ (WARMINGUP,hotenough) = STANDBY

δ (WARMINGUP,maintenance) = MAINTENANCE

δ (ERROR,activate) = ERROR

δ (ERROR,deactivate) = ERROR

δ (ERROR,hotenough) = ERROR

δ (ERROR,maintenance) = MAINTENANCE

δ (MAINTENANCE,activate) = STANDBY

δ (MAINTENANCE,hotenough) = MAINTENANCE

δ (MAINTENANCE,maintenance) = MAINTENANCE

δ (MAINTENANCE,deactivate) = MAINTENANCE

This state machine describes the behavior of a central heating system (see Figure 7.20 for a

graphical representation). It is an example state machine distributed along with the source

code of the original NunniFSMGen implementation.

7.4.2 NunniFSMGen Input Model

The input model used by NunniFSMGen is not a 5-tuple of a state machine as defined

in Paragraph 7.4.1, but a transition table. The transition table is a set of transition rules

of the form startingState event nextState action. The tuple of startingState

and event is equal to the left-hand side of the transition rules of Definition 7.4.1. The

name event is chosen instead of token to indicate it is an event driven state machine. The

right-hand side of the transition rule corresponds to the nextState. An additional feature

is to specify a method call hooked to a transition using the action field. This method

call is invoked when the state machines uses that transition rule. If the nextState is a

dash -, then a transition rule will not cause a change of state. The dash - can also be used

in the action field to specify that no action is required when the transition is executed.

The action can also contain an exclamation mark !. The exclamation mark defines that

the action must throw an exception and that the state machine will go the error state. The

states and alphabet are declared implicitly by means of the transition rules.
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STANDBYstart

WARMINGUP

ERROR

MAINTENANCE

activate

hotenough

maintenance

deactivate

activate

hotenough

maintenance

deactivate

activate
hotenough

maintenance

deactivate

activate

hotenough
maintenance

deactivate

Fig. 7.20 Graphical representation of the central heating state machine.

The transition table also supports the declaration of parameters to specify (optional) prop-

erties, such as the error state. The following properties are available:

• Context: Name of the FSM. All resulting classes are named after this name using it

as prefix.

• InitialState: The initial state of the FSM.

• ErrorState: The error state of the FSM. This is a required field in case an error action

’!’ is specified.
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• Package(only Java): Name of the package of the generated code.

• EventParamType(optional): parameter type passed on event methods.

• Copyright(optional): a file containing a copyright text to be included at the top of

each generated file.

The optional properties of the transition table are not available in the reimplementation of

NunniFSMGen.

The grammar of the transition table format is shown in Figure 7.21. Constructor informa-

tion is specified to translate the parse tree of the state tables to abstract syntax trees. The

character classes of the lexical sorts are equal to Java strings, and as a result, it is possible

to define a state table resulting in syntactical incorrect output code.

The original implementation of NunniFSMGen does not use an advanced grammar for

parsing the state table. The grammar of the state table of the reimplemented NunniFSMGen

prevents syntax errors as it does only allow character classes which are accepted by the

identifier character classes of the target languages. The advantage of checking the input

data is earlier detection of errors in the generation process. For example, the nonterminal

Id is defined by the character class shared by all output languages of NunniFSMGen. When

the character class of one output language is richer than the other output language(s), it is

possible that code generated for the first output language is well-formed, while the code

generated for the next output language is syntactically incorrect. The allowed identifiers

are limited by defining reject rules for Id to prevent collisions with keywords of the output

languages, such as the if. Instead of using reject rules in the transition table grammar, a

prefix could be added to the identifiers in the generated code. This approach is not used to

have a clear mapping between the transition table and the generated code.

In accordance with the state machine definition of Definition 7.4.1, NunniFSMGen requires

that a transition rule is defined for each pair existing in the Cartesian product of states and

events, even when transition and action are empty. In other words, the number of transition

rules |transition rules| must be equal to |states| ∗ |events|. A NunniFSMGen transition

table for the central heating system of Example 7.4.1 is shown in Figure 7.22. The abstract

syntax tree of this transition table is given in Figure 7.23. It is obtained by desugaring the

parse result of the transition table. The model transformation presented in Section 7.4.3

uses this abstract syntax tree as input.
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1 module FSMGen

3 h i d d e n s
c o n t e x t−f r e e s t a r t −symbols Ru les

5 e x p o r t s
s o r t s Ru le s Rule N e x t S t a t e A c t i o n

7 c o n t e x t−f r e e s y n t a x
Rule∗ −> Rules { cons ( ” r u l e s ” )}

9 ” C o n t e x t ” Id −> Rule { cons ( ” c o n t e x t ” )}
” I n i t i a l S t a t e ” Id −> Rule { cons ( ” i n i t i a l ” )}

11 ” E r r o r S t a t e ” Id −> Rule { cons ( ” e r r o r ” )}
” Package ” PackageName −> Rule { cons ( ” package ” )}

13 ” C o p y r i g h t ” FileName −> Rule { cons ( ” c o p y r i g h t ” )}
” EventParamType ” Id −> Rule { cons ( ” paramtype ”)}

15 Id Id N e x t S t a t e Ac t io n −> Rule { cons ( ” t r a n s i t i o n ” )}
Id −> N e x t S t a t e { cons ( ” n e x t s t a t e ” )}

17 ”−” −> N e x t S t a t e { cons ( ” n o n e x t s t a t e ” )}
Id −> A c t i o n { cons ( ” a c t i o n ” )}

19 ”−” −> A c t i o n { cons ( ” n o a c t i o n ” )}
” ! ” −> A c t i o n { cons ( ” e r r o r a c t i o n ” )}

21
” i f ” −> Id { r e j e c t }

23
e x p o r t s

25 s o r t s Id
l e x i c a l s y n t a x

27 [ a−zA−Z\ ] [ a−zA−Z\ 0−9]∗ −> Id
l e x i c a l r e s t r i c t i o n s

29 Id −/− [ a−zA−Z\ 0−9]

Fig. 7.21 Context-free grammar for NunniFSMGen transition table.
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1 C o n t e x t H e a t e r
I n i t i a l S t a t e STANDBY

3 E r r o r S t a t e ERROR
Package examples . h e a t e r

5
STANDBY a c t i v a t e WARMINGUP warmup

7 STANDBY d e a c t i v a t e − −
STANDBY hotenough ERROR !

9 STANDBY m a i n t e n a n c e MAINTENANCE m a i n t a i n
WARMINGUP a c t i v a t e − −

11 WARMINGUP d e a c t i v a t e STANDBY
h e a t e r o f f

WARMINGUP hotenough STANDBY
h e a t e r o f f

13 WARMINGUP m a i n t e n a n c e MAINTENANCE
h e a t e r o f f
ERROR a c t i v a t e − −

15 ERROR d e a c t i v a t e − −
ERROR hotenough − −

17 ERROR m a i n t e n a n c e MAINTENANCE −
MAINTENANCE a c t i v a t e STANDBY
i n i t i a l i z e

19 MAINTENANCE d e a c t i v a t e − −
MAINTENANCE hotenough − −

21 MAINTENANCE m a i n t e n a n c e − −

Fig. 7.22 Transition table for the central heating system of Example 7.4.1.

1 r u l e s ( [
c o n t e x t ( ” H e a t e r ” ) ,

3 i n i t i a l ( ”STANDBY” ) ,
e r r o r ( ”ERROR” ) ,

5 package ( ” examples . h e a t e r ” ) ,
t r a n s i t i o n ( ”STANDBY” , ” a c t i v a t e ” ,

7 n e x t s t a t e ( ”WARMINGUP” ) , a c t i o n ( ” warmup ” ) ) ,
. . .

9 t r a n s i t i o n ( ”MAINTENANCE” , ” m a i n t e n a n c e ” ,
n o n e x t s t a t e , n o a c t i o n )

11 ] )

Fig. 7.23 Part of the abstract syntax tree of the transition table of Example 7.4.1.

7.4.3 State Machine Implementation

NunniFSMGen translates a transition table into an implementation based on the state design

pattern [Gamma et al. (1995)]. The state design pattern is given in Figure 7.24. NunniFSM-

Gen implements the state pattern using the transition table, where the events are the handles
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and the states are implemented as concrete states. The UML class diagram of the central

heating system of the Java code generated by NunniFSMGen is shown in Figure 7.25. The

generated state machine slightly differs from the original state pattern. First, the context

class HeaterFSM overrides a class Heater. The class Heater contains the implementation

of the action methods and is used by the states to invoke the action methods at a state transi-

tion. The inheritance of the class Heater allows editing of the action method bodies in the

Heater class. The second difference with the original state design pattern is the object o in

the argument of the event handlers. This argument is an optional object, which can be used

by the action methods as context information. On class level the following functionality is

provided by the generated classes:

• HeaterFSM (Context)

It defines the abstract methods to handle events and is the interface

for components using the state machine.

It defines a private changeState method replacing the current

state object by a new one.

• HeaterState (State)

It defines an interface for all classes that represent different

operational states.

• HeaterSTANDBYState (ConcreteStates)

Each subclass implements a behavior associated with a state.

It handles the different events invoked via the Context object. The

handle call has the Context object as argument and when a

transition is defined, the changeState method is called with an

object of the new concrete state. If an action is defined, this action is

called before the changeState method is invoked.

Next to Java, NunniFSMGen also supports C++ and C. The implementation of the state

machines in C++ and C are almost similar to the Java one, except that the C implementation

of the state machine uses a struct to store the state object. Furthermore, C has no native

support for exception handling, this is simulated by a return value. It is possible to support

other output languages, as long as these languages have constructs to implement the state

design pattern.

b.j.arnoldus@repleo.nl



Case Studies 167

State
handle ()

Context
request ()

ConcreteStateA
handle ()

ConcreteStateB
handle ()

state.handle ()

Fig. 7.24 State design pattern.

7.4.4 Original Code Generator

The original implementation of NunniFSMGen is a print statement based generator written

in Java. Its main class contains a simple parser for the input file, constructing a one-to-one

in memory representation of the transition table without any kind of rewriting or transfor-

mation. For each output language a code generator class is implemented containing all the

generator logic and object code. Such a code generator class can be classified as a single-

stage code generator, since the different code generator classes share a lot of mutual shared

code not factorized out in a model transformation. The model transformations are entan-

gled between object code artifacts. During the initialization of the code generator, only the

set of events and the set of states are calculated. An example of the entanglement model

transformation is the generation of the particular code for an event. These print statements

are combined with the calculation of all events for a given state.

NunniFSMGen supports different configurations for an event:

• No transition, no action;

• No transition, with action;

• Transition to new state without action;

• Transition to new state with action;

• Transition to errorState with error action.

Considering the original implementation of NunniFSMGen, the different implementations

of the required behavior are selected via a set of conditions. Since NunniFSMGen exists

of three almost independent single-stage code emitters, the set of conditions are cloned

between the different code emitters. The NunniFSMGen code emitters for C++ and Java

are almost identical except for the object code. In case of the code emitter for C, the

metacode is almost the same, however the C implementation of the exception handling

differs from the C++ and Java version.
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Fig. 7.25 Classes generated from the heater transition table.
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7.4.5 Reimplemented Code Generator

The reimplementation of NunniFSMGen is based on a two-stage architecture using a

parser, model transformation phase and templates. The architecture of the reimplemented

NunniFSMGen is shown in Figure 7.26. The input model parser and model transformation

are output language independent, while the templates contain the output language specific

code. For each output language, i.e. C, C++ and Java, a set of templates is defined. The

mutual shared code in the templates is limited to the metacode responsible for traversing

the input data tree. All templates use the same abstract representation of the state machine

as input data. Tailored model transformations for a specific output language are unneces-

sary. As a result the model transformation is not longer entangled in the output language

specific part of the code generator.

Transition
table

Parser

Abstract
syntax tree

Trans-
former

Abstract state
machine

Repleo +
Java templates

Repleo +
C templates

Repleo +
C++ templates

Java code C code C++ code

Fig. 7.26 Architecture of the reimplemented NunniFSMGen.

The transition table cannot be used directly for generating the code. The state pattern has

a hierarchical structure, where each state implements handlers for each event, while the

transition table is a list of vectors pointing from the startState to the nextState. A

model transformation is necessary to map the vector based transition table to a hierarchical

b.j.arnoldus@repleo.nl



170 Code Generation with Templates

format. This format is an abstract implementation of the state design pattern. It is used

as input for the code emitters to generate the actual implementation of the state machine.

Figure 7.27 shows the regular tree grammar of this hierarchical format. The core elements

are initialstate, the set of events, the set of actions and the list of transitions.

The first three elements directly map on elements of the 5-tuple of the formal definition

of a state machine. The element transition defines the transition for a state for every

possible event.

1 h i d d e n s
s t a r t −symbols AFSM

3
e x p o r t s

5 s o r t s AFSM C o n t e x t I n i t i a l S t a t e E r r o r S t a t e
Package CopyRight ParamType T r a n s i t i o n s

7 E ve n t s A c t i o n s T r a n s i t i o n Event
N e x t S t a t e Ac t i on S t a t e

9
s y n t a x

11 afsm ( Contex t , I n i t i a l S t a t e ,
E r r o r S t a t e , Package , CopyRight ,

13 ParamTypem , T r a n s i t i o n s , Events ,
A c t i o n s )

15 −> AFSM
c o n t e x t ( Id ) −> C o n t e x t

17 i n i t i a l s t a t e ( Id ) −> I n i t i a l S t a t e
e r r o r s t a t e ( Id ) −> E r r o r S t a t e

19 package ( PackageName ) −> Package
c o p y r i g h t ( FileName ) −> CopyRight

21 paramtype ( Id ) −> ParamType
t r a n s i t i o n s ( T r a n s i t i o n ∗ ) −> T r a n s i t i o n s

23 t r a n s i t i o n ( S t a t e , e v e n t s ( Event∗ )
−> T r a n s i t i o n

25 e v e n t ( Event , N e x t S t a t e , Ac t i o n )
−> Event

27 e v e n t s ( Id∗ ) −> E v e n t s
a c t i o n s ( Id∗ ) −> A c t i o n s

29 Id −> S t a t e
Id −> Event

31 Id −> N e x t S t a t e
Id −> A c t i o n

33 StrCon −> Id
St rCon −> FileName

35 StrCon −> PackageName

Fig. 7.27 Regular tree grammar of abstract implementation of the state design
pattern.

A model transformation is specified to transform the abstract syntax tree of the transition
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table to the abstract implementation of the state design pattern. This transformation is based

on the following, here informally defined, rules:

• Propagate all properties to the output model;

• Collect all unique events from the transition rules and store them in the set events;

• Collect all unique actions from the transition rules and store them in the set actions;

• Make for each unique state a new transition rule and add for each event a triple

containing the event, the nextState and the action. Collect all these rules in the

set transitions.

This model transformation is implemented in ASF using seven equations and 18 sub-

equations. The abstract implementation of the state design pattern of the central heating

system is shown in Figure 7.28.

1 afsm (
c o n t e x t ( ” H e a t e r ” ) ,

3 i n i t i a l ( ”STANDBY” ) ,
e r r o r ( ”ERROR” ) ,

5 package ( ” examples . h e a t e r ” ) ,
c o p y r i g h t ( ” ” ) ,

7 pa ramtype ( ” ” ) ,
t r a n s i t i o n s ( [

9 t r a n s i t i o n ( ”STANDBY” , e v e n t s ( [
e v e n t ( ” a c t i v a t e ” ,

11 n e x t s t a t e ( ”WARMINGUP” ) , a c t i o n ( ” warmup ” ) ) ,
e v e n t ( ” d e a c t i v a t e ” , n o n e x t s t a t e , n o a c t i o n ) ,

13 e v e n t ( ” ho tenough ” , n e x t s t a t e ( ”ERROR” ) , e r r o r a c t i o n ) ,
e v e n t ( ” m a i n t e n a n c e ” , n e x t s t a t e ( ”MAINTENANCE” ) ,

15 a c t i o n ( ” m a i n t a i n ” ) ) ] ) ) ,
. . .

17 ] ) ,
e v e n t s ( [ ” a c t i v a t e ” , ” d e a c t i v a t e ” ,

19 ” ho tenough ” , ” m a i n t e n a n c e ” ] ) ,
a c t i o n s ( [ ”warmup ” , ” m a i n t a i n ” , ” h e a t e r o f f ” , ” i n i t i a l i z e ” ] )

21 )

Fig. 7.28 Abstract implementation of the state design pattern of the heater transition
table of Example 7.4.1.

The code emitters are implemented using syntax-safe templates (see Figures 7.29, 7.30

and 7.31). The use of syntax-safe templates has some consequences over the use of a

text-based generator. For example, the C and C++ grammars have a couple of plus list

nonterminals, which requires that at least one item must be inserted in that list. A place-

holder representing such a plus list should at least generate one element. The placeholders
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and template evaluator traversal are context-free, so they have no notion of the surrounding

elements. The template evaluator cannot determine whether the list is empty or not. There-

fore a plus list placeholder must return at least one element. For example, the semi-colon

defined at Line 46 of Figure 7.29.

Another consequence of using a syntax-safe approach, and thus also for syntax-safe tem-

plates, is the cloning of the object code in lines 9-21 of Figure 7.31. The if-statement in

the object code is defined twice, first with an else part and second without the else part.

Syntax-safe templates require that the if-statement is a complete grammar element. The

else part is not defined as an optional nonterminal in the used C grammar, thus the object

code must be defined twice.

The metavariable $root is used in these snippets to obtain global information, like the

FSM context name, while processing a subtree of the input data. Finally, the Java template

of Figure 7.30 shows how multiple files are generated for every concrete state by the match-

replace placeholder surrounding the template template.
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1 t e m p l a t e [
. . .

3 <: match $ e v e n t s 1 e v e n t s 1 :>
<: [ e v e n t ( $even t , $ n e x t s t a t e , $ a c t i o n ) ] =:>

5 <: e v e n t c o d e ( ) :>
<: [ e v e n t ( $even t , $ n e x t s t a t e , $ a c t i o n ) , $ e v e n t l i s t ] =:>

7 <: e v e n t c o d e ( ) :>
<: $ e v e n t l i s t :>

9 <: end :>
. .

11 ]

13 e v e n t c o d e [
vo id <: $ r o o t 1 a f s m 1 c o n t e x t 1 + $ s t a t e + ” S t a t e ” :> : :< : $ e v e n t :>

15 ( <: $ r o o t 1 a f s m 1 c o n t e x t 1 + ”FSM” :> ∗ c tx ,
vo id ∗o ) throw ( L o g i c E r r o r ) {

17 <: match $ a c t i o n :>
<: e r r o r a c t i o n =:>

19 c tx−>c h a n g e S t a t e (
<: $ r o o t 1 a f s m 1 c o n t e x t 1 + $ r o o t 1 a f s m 1 e r r o r 5

21 + ” S t a t e ” : > : : i n s t a n c e ( ) ) ;
th row L o g i c E r r o r ( ) ;

23 <: a c t i o n ( $ac t i onname ) =:>
t r y {

25 c tx−><: $ac t i onname :>( o ) ;
}

27 c a t c h ( L o g i c E r r o r &e ) {
c tx−>c h a n g e S t a t e (

29 <: $ r o o t 1 a f s m 1 c o n t e x t 1 + $ r o o t 1 a f s m 1 e r r o r 5
+ ” S t a t e ” : > : : i n s t a n c e ( ) ) ;

31 throw ;
}

33 <: n e x t s t a t e t m p ( $ n e x t s t a t e ) :>
<: n o a c t i o n =:>

35 <: n e x t s t a t e t m p ( $ n e x t s t a t e ) :>
<: end :>

37 }
]

39
n e x t s t a t e t m p [

41 <: match :>
<: n e x t s t a t e ( $ n e x t s t a t e n a m e ) =:>

43 c tx−>c h a n g e S t a t e (
<: $ r o o t 1 a f s m 1 c o n t e x t 1 + $ n e x t s t a t e n a m e

45 + ” S t a t e ” : > : : i n s t a n c e ( ) ) ;
<: n o n e x t s t a t e =:> ;

47 <: end :>
]

Fig. 7.29 C++ version of the template implementation.
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<: match a f s m 1 t r a n s i t i o n s 6 :>
2 <: [ t r a n s i t i o n ( $ s t a t e , $ e v e n t s ) , $ t r a n s i t i o n s ] =:>

t e m p l a t e [
4 <: $ r o o t 1 a f s m 1 c o n t e x t 1 + $ s t a t e + ” S t a t e . j a v a ” :> ,

c l a s s <: $ r o o t 1 a f s m 1 c o n t e x t 1 + $ s t a t e + ” S t a t e ” :>
6 e x t e n d s <: $ r o o t 1 a f s m 1 c o n t e x t 1 + ” S t a t e ” :>

{
8 . . .

}
10 ]

<: $ t r a n s i t i o n s :>
12 <: [ ] =:>

<: end :>

Fig. 7.30 Java snippet of the template implementation.

1 e v e n t c o d e [
s t a t i c i n t <: $ r o o t 1 a f s m 1 c o n t e x t 1 + $ s t a t e + ” S t a t e ” + $ e v e n t :>

3 ( s t r u c t <: $ r o o t 1 a f s m 1 c o n t e x t 1 + ”FSM” :> ∗fsm ,
vo id ∗ o ) {

5 i n t r e t = 0 ;
<: match $ a c t i o n :>

7 . . .
<: n e x t s t a t e ( $ n e x t s t a t e n a m e ) =:>

9 i f ( r e t < 0 )
fsm−>c h a n g e S t a t e ( fsm ,

11 &<: ”m ” + $ r o o t 1 a f s m 1 c o n t e x t 1
+ $ r o o t 1 a f s m 1 e r r o r 5 + ” S t a t e ” :> ) ;

13 e l s e
fsm−>c h a n g e S t a t e ( fsm ,

15 &<: ”m ” + $ r o o t 1 a f s m 1 c o n t e x t 1
+ $ n e x t s t a t e n a m e + ” S t a t e ” :> ) ;

17 <: n o n e x t s t a t e =:>
i f ( r e t < 0 )

19 fsm−>c h a n g e S t a t e ( fsm ,
&<: ”m ” + $ r o o t 1 a f s m 1 c o n t e x t 1

21 + $ r o o t 1 a f s m 1 e r r o r 5 + ” S t a t e ” :> ) ;
. . .

23 <: end :>
r e t u r n r e t ;

25 }
]

Fig. 7.31 C snippet of the template implementation.
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7.4.6 Difference Old and New Implementation

On architectural level, the new implementation of NunniFSMGen is based on a two-stage

architecture, where the old implementation almost directly generates code from the transi-

tion table in a single-stage architecture. The reimplementation offers better separation of

concerns by separating the model transformation from the code generation. The first stage

parses and rewrites the transition table to get an abstract implementation of the state design

pattern. The second stage is responsible for generating the concrete code for the different

output languages. It is expected that the more strict separation of concerns reduces the

work for adding a new output language compared to the work for adding a new output

language in the original implementation. In the original implementation also the model

transformation has to be reimplemented. Furthermore, the original code generator contains

code clones between the different code emitters for the different output language. Introduc-

ing a model transformation stage for the mutual shared code solved the code clones while

leaving the case specific code in the templates.

At code level, the original implementation shows a lot of entanglement of different code

artifacts in a single compilation unit. The original implementations contain statements for

the model transformation, statements for the code generation phase and strings containing

the object code in a single compilation unit. The object code syntax has a lot in common

with the metalanguage syntax, which makes it hard to distinguish the different code arti-

facts. The cocktail of these different code fragments is confusing and is hard to read, as a

result hard to maintain. When looking to the templates of the new implementation, it is still

a hard to understand component of the code generator. However, the template based imple-

mentation shows a better syntactical difference between the metacode and object code. The

object code is not encapsulated in single line strings, so the object code is not obfuscated

by brackets and quotes, making it easier to read and understand.

The Table 7.2 shows the metrics for the old implementation of NunniFSMGen and the

reimplementation. All the nine files of the original NunniFSMGen are measured and only

the license blocks are stripped from the code. The set of files measured of the reimplemen-

tation are the grammar definitions, model transformations and templates. Total number of

files of the reimplementation is 19.

Considering Table 7.2, the number of lines of codes without blanks is almost halved. The

number of tokens of the reimplementation is more than halved with respect to the original

implementation. The average number of non-alphanumeric characters per line is not al-

tered. In comparison with the original implementation of ApiGen, the code emitter classes
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of NunniFSMGen show a lot of string constants containing object code. These string con-

stants contain a lot of brackets and quotes, the result is that the ratio of non-alphanumeric

tokens per line is not lower in the original implementation.

Table 7.2 Metrics of NunniFSMGen and the reimplementation.

Metric Original Reimplementation

Lines of Code 1,602 1,005

Lines of Code (without blank lines) 1,430 738

Tokens 22,024 10,438

Alphanumeric tokens 5,820 2,393

Non-alphanumeric tokens 9,189 4,762

White space tokens 7,015 3,283

Average number of tokens per line 15.4 14.14

Average number of non-alphanumeric tokens per line 6.43 6.45

7.4.7 Evaluation

The original implementation of NunniFSMGen contains a single-stage generator for each

output language. The reimplementation is based on a two-stage architecture, where the

output language is selected via the set of templates in the second stage. The model trans-

formation is the same for all output languages and only output language specific code is

defined in the templates. The result is that the size of the reimplementation is almost halved

with respect to the original implementation of NunniFSMGen. It is expected that the more

strict separation of concerns reduces the work for adding a new output language than adding

a new output language in the original implementation, where the model transformation also

has to be reimplemented. On code level, the use of templates results in better readable ob-

ject code, since object code is not embedded in println statements, which obfuscate the

code by splitting it in substrings.

Beside the improved maintainability, the use of grammars and the use of the syntax-safe

template evaluator improve the correctness of the generated code of the reimplemented

NunniFSMGen. Syntax errors are earlier detected in the reimplemented code generator, so

users of the code generator are not confronted with syntax errors in the generated code.
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7.5 Dynamic XHTML generation

Beside just-in-time compilation [Krall (1998)], run-time code generation plays an impor-

tant role in contemporary applications communicating via the Internet, i.e. web applica-

tions. These web applications generate (X)HTML pages on request, which are interpreted

by the browser to render the user interface of the application. Since the emergence of web

applications a lot of web application frameworks, such as Java Spring Framework4, Ruby

on Rails5, Django6, PHP Zend7, and so on, have been developed. These web application

frameworks have in common that they are delivered with a kind of text-based template

evaluator to render the HTML output.

The problem of these web applications is to ensure that the fixed HTML code in the tem-

plates does not contain syntax errors, which otherwise will result in errors in the browser.

Dynamic code generation and the ability of browsers to execute code, like cascade style

sheets (CSS) 8 and JavaScript [Goodman and Eich (2000)], can also result in security

breaches.

This case study covers code generation during the use of an application instead of using

code generation for the development of the application. It is about dynamic XHTML gen-

eration in web applications. XHTML [Pemberton et al. (2002)] is a more restrictive version

of HTML, so that it can be defined by a context-free grammar. This case study shows the

use of syntax-safe templates to reduce the possibility of security bugs in applications gen-

erating code during run-time. A small shout-wall web application is implemented, where

the security is enforced in a declarative manner by grammar definitions and syntax-safe

template evaluation. First cross-site scripting is discussed. After that the implementation

of the shout-wall web application is presented followed by the approach to ensure the web

application is no longer vulnerable for cross-site scripting.

7.5.1 Cross-site Scripting

Cross-site scripting (XSS) is the class of web application vulnerabilities in which an at-

tacker causes a victim’s browser to execute untrusted JavaScript, CSS or (X)HTML tags

with the privileges of a trusted host [Wassermann and Su (2008)]. This untrusted code can

collect data, change the look and/or change the behavior of the original web site. It is the

4http://www.springsource.org (accessed on December 18, 2011)
5http://rubyonrails.org(accessed on December 18, 2011)
6http://www.djangoproject.com (accessed on December 18, 2011)
7http://www.zend.com (accessed on December 18, 2011)
8http://www.w3.org/TR/CSS1/ (accessed on December 18, 2011)
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number four of the top 25 security bugs in web applications in 20119. Even contempo-

rary large web-services, like Google, YouTube, Twitter and Facebook, have to deal with

cross-site scripting. The main cause of cross-site scripting is the evolution of (X)HTML

(and sub-languages) over the past decades. The way (X)HTML has evolved resulted in a

liberal interpretation of the (X)HTML language. Browsers, such as Firefox and MS In-

ternet Explorer, even interpret (X)HTML code containing a lot of errors. As a result, the

evaluation function of the browser executes JavaScript or CSS embedded in the most exotic

constructions, like hex encoding or code with embedded tabs or new lines10.

The first requirement for a web application to be vulnerable for XSS is to have some un-

trusted (user) input, which is used for rendering the output. This security bug is already

present natively in a basic web application having a commit form and a result view con-

taining the committed data. An attacker can post some untrusted code between script

or style tags in the commit form, which is interpreted by a browser rendering the result

page.

A common architecture for implementing these web applications is the model-view-

controller architecture. The controller describes the behavior of the web application and

is usually some application specific (business) logic written in a general purpose (script)

language on top of a web framework, such as Django, Java Spring Framework or Ruby on

Rails. The controller handles the web requests and returns the view to the web browser.

The web framework performs web application domain specific tasks such as URL mapping,

load balancing and so on. The information necessary for processing these web requests is

stored in the model; usually implemented as a relational database. This database contains

information loaded at deployment of the web application, submitted via the web or inserted

via another external source. The view renders the web page and is most times implemented

as a text-template system querying the objects provided by the controller.

The problem of cross-site scripting arises when data is literally stored in the database and

literally inserted in the rendered web page. An attacker can, for example, submit a piece of

JavaScript

<script>alert("Hello World");</script>

on a reaction form on a web site. The JavaScript code is stored in the database and rendered

on all the web pages of all viewers of that web site. This results in an annoying pop-up

message, see Figure 7.32.
9http://cwe.mitre.org/top25/ (accessed on December 18, 2011)

10http://ha.ckers.org/xss.html (accessed on December 18, 2011)
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Fig. 7.32 JavaScript pop-up message.

Most web frameworks already offer prevention against this naive form of cross-site script-

ing. The first solution is to scan the input committed via a web form before it is inserted in

the database, so the database only contains trusted data. The problem of this approach is

that it assumes that the database only contains trusted data. This is a valid solution as long

as the database itself is not vulnerable for attacks, but that is in practice not a realistic as-

sumption. Besides that, alternative sources of data, such as RFID tags or URL parameters,

are often seen by developers as trusted data and directly stored in the database, while this

data can contain malicious code [Rieback et al. (2006)]. At the end, one cannot trust any

data stored in the database, and at the level of the web page generator one should consider

all the data as untrusted to prevent cross-site scripting attacks.

The second solution against cross-site scripting provided by web frameworks is based on

the assumption that the data necessary to render the web page can indeed not be trusted.

Most attacks can easily be disarmed by replacing the characters < and > to a non executable

equivalent, &lt; and &gt;, before inserting it in the final (X)HTML code. Contemporary

template evaluators provided by web frameworks escape potential hazardous characters

before the data is inserted in the web page by default. However, sometimes it is not feasible

to use this escaping of characters as it is required to render layout information, like bold

and italic tags, or it is even required to render a subset of JavaScript such as a JSON tree.

At that point the escape mechanism must be turned off for that placeholder. As a result the

web page generator is vulnerable for cross-site scripting attacks.

In case character replacement cannot be used, a specific cross-site scripting filter or check

can be defined. These filters are most times manually written in the same general pur-

pose language as used for implementing the controller component of the web application.

These implementations contain a lot of unrelated details and the filter specification is scat-
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tered over the code. An example of a small hand-written filter is given in Figure 7.3311.

It removes <script> tags, javascript: calls and onXxxxx attributes, like onLoad or

onClick.

p u b l i c s t a t i c S t r i n g s a n i t i z e ( S t r i n g s t r i n g ) {
2 r e t u r n s t r i n g

. r e p l a c e A l l ( ” ( ? i )< s c r i p t .∗?> .∗?< / s c r i p t .∗? >” , ” ” )
4 . r e p l a c e A l l ( ” ( ? i )< .∗? j a v a s c r i p t : .∗? > .∗? < / .∗? >” , ” ” )

. r e p l a c e A l l ( ” ( ? i )< .∗?\\ s+on .∗?> .∗?< / .∗?>” , ” ” ) ;
6 }

Fig. 7.33 Hand-written cross-site scripting filter.

7.5.2 Preventing Cross-site Scripting

Syntax-safe templates can be used to prevent cross-site scripting. In short, this solution uses

syntax-safe templates to parse the XHTML web-page including placeholders. The object

code is already checked for well-formedness with respect to the XHTML grammar. The

placeholders in the template are typed with the object language nonterminal they represent.

This object language nonterminal is used to check that these placeholders are replaced by

a valid (sub)set of the XHTML language during rendering the web page. Most times the

language produced by the nonterminal of the placeholder is too broad to prevent cross-

site scripting. Most tags of XHTML accept the complete XHTML language in their body.

Section 5.2.1.2 introduced explicit syntactical typing of placeholders, which can be used

to limit the language the placeholder can produce. The syntax-safe evaluator prevents

inserting malicious code in the generated XHTML page, when the subset of the XHTML

language produced by the nonterminal of the placeholder is disjoint from the set of browser

executable code.

This solution to prevent injection of malicious code in the XHTML is based on filtering the

data before it is inserted. Filtering can be based on the principle of black-listing or white-

listing [Wassermann and Su (2008)]. In case of white-listing, the set of allowed sentences is

specified, in case of black-listing every sentence is allowed except the harmful ones, which

are rewritten or removed by the filter. The problem of filtering is that browsers handle

XHTML liberally and not in a uniform way. Covering the prevention of all manners of

triggering the JavaScript and CSS evaluator is hard and different per browser. Wassermann

et al. [Wassermann and Su (2008)] have reviewed the source code and documentation of
11http://www.rgagnon.com/javadetails/java-0627.html (accessed on December 18, 2011)
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common browsers to obtain a list of ways to write executable JavaScript or CSS code.

This list depends on the inspected version of the browser and for closed-source browsers

this list is probably not complete. Without knowing which sentences are triggering the

browser evaluation engine, it is hard, if not impossible, to ensure that cross-site scripting is

prevented.

A white-list system is preferable over a black-listing approach. White-list filters only in-

clude trusted syntax instead of excluding untrusted syntax. In case of a black-list filter there

is always a chance that some untrusted syntax is not excluded. A white-list filter does not

allow more syntax than necessary. White-listing is less susceptible for browser updates, as

new ways of expressing executable JavaScript or CSS are most likely not allowed, except

if this new way is a subset of the white-listed sentences grammar. Testing, verifying or

even proving that the nonterminal only produces a language without harmful sentences is

more feasible than proving the completeness of black-list filters as context-free grammars

are compact.

The white-list filter in the syntax-safe template approach is based on a context-free gram-

mar for XHTML. The XHTML grammar used in this case study is a strict implementation

of the XHTML specification [Pemberton et al. (2002)] and more strict than the HTML syn-

tax accepted by most browsers. Using this grammar for the object language, it is precisely

defined which language a nonterminal can produce. When this language of a nonterminal

does not contain sentences resulting in triggering the JavaScript or CSS evaluator, it can be

safely extended with placeholder syntax. The result of using syntax-safe templates com-

bined with this XHTML grammar is that cross-site scripting protection is handled by the

template evaluator instead of by hand-written error-prone filters.

7.5.3 Example Web Application: Shout Wall

This case study discusses an example web application, which demonstrates preventing

cross-site scripting attacks by using syntax-safe templates. This web application is a “shout

wall” or “guest book” where a visitor can post a message and a name. The following re-

quirements are defined for this example web application:

• For a post, the message field is mandatory and the name field is optional.

• Both fields, name and message, must contain human readable text, XHTML tags are

not allowed.

• Beside human readable text, the message field may contain a JSON tree between

script tags.
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The last rule, allowing JSON data in the message field is for demonstration purposes. This

requirement makes it impossible to use a naive character replacement to prevent cross-site

scripting. Instead of rewriting characters, it must be verified that only well-formed JSON,

without any executable JavaScript artifacts, is inserted in the output code.

The “shout wall” web application is implemented using the model-view-controller architec-

ture. The controller class is listed in Figure 7.34 and extends the Java servlet API [Hunter

and Crawford (2001)]. A servlet class may respond to HTTP requests. For this applica-

tion, persistent storage of the data is not required and thus the model is also declared in

the controller class by the field messages, which is initialized as an empty list. The model

is based on ATerms (see Section 2.6.3), the input data tree format used by Repleo. The

ATermLibrary is used to ensure the ATerms are well-formed.

The controller class implements two methods of the Java servlet API. The first method

handles the get requests and returns a web page based on an instantiated template. The

template evaluator is invoked when the doGet is called. During evaluation of the template

it will throw an exception if a parse error occurs. A parse error is the result of a string in

the input data for the field message or name, which is not defined by the object language

grammar. If a (parser) exception occurs the latest added message is removed from the input

data list and the web page is rendered again with a flag to display an error message. This

second template evaluator call in the catch block is not enclosed in a try-catch statement,

because the web application returns in a valid state when the last added message is removed.

The web application is started in a valid state, i.e. a well-formed template and empty list

of messages, only adding messages to the list can result in an exception, so it is always the

last added message causing the exception.

The second method in the controller class handles the post request. It collects the data from

the post request and stores it in a message object. The ATmake method of the ATerm factory

is used to construct the message object to prevent ATerm injection.

The controller class does not contain any specific logic to prevent HTML injection attacks.

Data committed by the user is directly stored in the model without any filtering. The only

behavior responsible for the protection against cross-site scripting is the try-catch block

in the controller. The controller expects that the template evaluator discover the attack

resulting in an exception.
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i m p o r t j a v a . i o . ∗ ;
2 . . .

4 p u b l i c c l a s s X s s S e r v l e t e x t e n d s H t t p S e r v l e t {
p r i v a t e ATermList messages ;

6 p r i v a t e a t e rm . pu re . P u r e F a c t o r y t e r m F a c t o r y = n u l l ;
p r i v a t e WebPageGenerator p a g e g e n e r a t o r ;

8
p u b l i c X s s S e r v l e t ( ) {

10 t e r m F a c t o r y = S i n g l e t o n F a c t o r y . g e t I n s t a n c e ( ) ;
p a g e g e n e r a t o r = new WebPageGenerator ( ) ;

12 messages = t e r m F a c t o r y . makeLis t ( ) ;
}

14
p u b l i c v o i d doGet ( H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e r e s )

16 t h r ow s S e r v l e t E x c e p t i o n , IOExcep t ion {
r e s . s e t C o n t e n t T y p e ( ” t e x t / h tml ” ) ;

18 P r i n t W r i t e r o u t = r e s . g e t W r i t e r ( ) ;
ATerm i n p u t d a t a = t e r m F a c t o r y . make (

20 ” d a t a ( e r r o r ( n o e r r o r ) , messages (< term > ) )” , messages ) ;
S t r i n g html = ” ” ;

22 t r y {
html = p a g e g e n e r a t o r . g e n e r a t e ( i n p u t d a t a ) ;

24 } c a t c h ( E x c e p t i o n e1 ) {
/ / remove e v i l message from messages

26 t h i s . messages = messages . g e t N e x t ( ) ;
i n p u t d a t a = t e r m F a c t o r y . make (

28 ” d a t a ( e r r o r ( d e t e c t e d ) , messages (< term > ) )” , messages ) ;
h tml = p a g e g e n e r a t o r . g e n e r a t e ( i n p u t d a t a ) ;

30 }
o u t . p r i n t l n ( h tml ) ;

32 o u t . c l o s e ( ) ;
}

34
p u b l i c v o i d do P o s t ( H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e r e s )

36 th rows S e r v l e t E x c e p t i o n , IOExcep t i on {
S t r i n g message = r e q . g e t P a r a m e t e r ( ” message ” ) ;

38 i f ( ! message . t r i m ( ) . e q u a l s ( ” ” ) ) {
S t r i n g name = r e q . g e t P a r a m e t e r ( ” name ” ) ;

40 ATerm messageNode =
t e r m F a c t o r y . make ( ” message(< s t r >,< s t r >)” , name , message ) ;

42 t h i s . messages =
t e r m F a c t o r y . makeLi s t ( messageNode , t h i s . messages ) ;

44 }
t h i s . doGet ( req , r e s ) ;

46 }
}

48
}

Fig. 7.34 Java Controller of the “shout wall” web application.
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The last discussed component of the “shout wall” web application is the view. The require-

ment for the view is that it only returns a well-formed XHTML page, otherwise it must

throw an error. The template for the “shout wall” is shown in Figure 7.35. It contains

XHTML code for the submit form and two match-replace placeholders; one for displaying

an error message and one for rendering the messages list. The generation of this messages

list is potentially vulnerable for cross-site scripting since substitution placeholders are used.

Table 7.3 shows the metrics of the two files of the shout wall web application.

Table 7.3 Metrics of the Shout Wall web application.

Metric Shout Wall

Lines of Code 168

Lines of Code (without blank lines) 149

Tokens 1,980

Alphanumeric tokens 649

Non-alphanumeric tokens 812

White space tokens 519

Average number of tokens per line 13.29

Average number of non-alphanumeric tokens per line 5.45

The view is implemented using syntax-safe templates, as a result the template is parsed and

the placeholders have a syntactical type. This syntactical type is used by the evaluator to

substitute the placeholders only with sentences belonging to the language of that syntactical

type, otherwise an error is generated. This behavior of syntax-safe template evaluation is

used to provide the protection against cross-site scripting attacks. An error during the

evaluation process indicates that the input data contains a sentence that is not allowed to

replace the substitution placeholder.

The requirements state that the message field may contain human readable text or a JSON

tree, and that the name field is optional and must be human readable text. Human readable

text without XHTML tags is provided by the XHTML grammar as the PCDATA nontermi-

nal. PCDATA may contain every character except the characters <, > and &. The substi-

tution placeholder responsible for generating the name is enforced to the syntactical type

PCDATA*, where the star list sort allows to substitute it with no text. This protection against

cross-site scripting attacks is easy to implement and indeed already supported by most web

template systems. They provide automatic escaping for the three forbidden characters.
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1 t e m p l a t e [
<!DOCTYPE html PUBLIC ”− / /W3C / / DTD XHTML 1 . 0 S t r i c t / / EN”

3 ” h t t p : / / www. w3 . org / TR / xhtml1 /DTD/ xhtml1− s t r i c t . d t d”>
<html xml : l a n g =” en ” xmlns =” h t t p : / / www. w3 . org / 1 9 9 9 / xhtml”>

5 <head>
< t i t l e >Cross−s i t e s c r i p t i n g p r e v e n t i o n example </ t i t l e >

7 </head>
<body>

9 <form a c t i o n = ” / X s s S e r v l e t . j a v a ” method =” p o s t ”>
<h1>Wri te your message on t h e wal l </h1>

11 <br /><br />
<b>Message (PCDATA or JSON): < / b><br />

13 < t e x t a r e a name=” message ” c o l s =”50” rows =”7” c l a s s =” t e x t b o x ”>
</ t e x t a r e a >

15 <br /><br />
<b>Name ( on ly PCDATA): < / b><br />

17 <i n p u t t y p e =” t e x t ” name=”name ” s i z e =”48” c l a s s =” t e x t b o x ”>
<br /><br />

19 <i n p u t t y p e =” submi t ” v a l u e =” Submit ” c l a s s =” t e x t b o x ”>
<br /><br />

21 </ form>

23 <: match d a t a 1 e r r o r 1 s o r t : XHtml−f low−i t em∗ :>
<: d e t e c t e d =:>

25 <b s t y l e =” c o l o r : r e d ” >You t r i e d t o p o s t some f o r b i d d e n t e x t !</b>
<br /><br />

27 <: n o e r r o r =:>
<: end :>

29
<: match d a t a 2 m e s s a g e s 1 :>

31 <: [ message ( $name , $ t e x t ) , $ t ] =:>
<b>message :< / b><br />

33 <p><: $ t e x t s o r t :PCDATA−JSON :> </p> <br />
<b>name :< / b> <i ><: $name s o r t :PCDATA∗ :></ i> <br /><br />

35 <: $ t :>
<: [ ] =:>

37 <: end :>

39 </body>
</ html>

41 ]

Fig. 7.35 XHTML template of the “shout wall” web application.

In order to show that syntax-safe templates are more advanced than simple escaping of

some characters in a string, it is required that the text of the message may contain human

readable text or a JSON tree. Escaping dangerous characters cannot be used anymore as

JSON trees between script tags contain these characters. A grammar must be defined for

JSON only producing valid JSON sentences that do not execute in the browser. A JSON
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grammar in SDF conforming to the JSON standard [Crockford (2008)] is presented in

Figure 7.36. This JSON grammar defines a subset of the original JSON language speci-

fication by limiting the class of characters allowed for JSStrings. The greater-than and

smaller-than characters are explicitly disabled; otherwise it is possible to embed a cross-site

scripting attack inside a JSON tree.

1 module JSON

3 e x p o r t s
s o r t s JSON JSONTUPLE J S S t r i n g J S S t r C h a r

5
c o n t e x t−f r e e s y n t a x

7 ”{” { JSONTUPLE ” , ” }∗ ”}” −> JSON
” [ ” { JSON ” , ” }∗ ” ] ” −> JSON

9 J S S t r i n g −> JSON
J S S t r i n g ” : ” JSON −> JSONTUPLE

11
l e x i c a l s y n t a x

13 ˜[\0−\31\n\ t \”\\\<\>] −> J S S t r C h a r
[\ ” ] c h a r s : J S S t r C h a r ∗ [\ ” ] −> J S S t r i n g

Fig. 7.36 JSON Grammar.

The JSON grammar is not a part of the XHTML grammar. Both grammars are mixed

by defining the grammar module of Figure 7.37. This grammar module adds the nonter-

minal PCDATA-JSON as alternative to the XHtml-Inline of the XHTML grammar. The

PCDATA-JSON nonterminal produces the language of sentences containing the set of JSON

trees between script tags and the set of sentences provided by PCDATA*. The production

rule adding PCDATA-JSON to the XHTML grammar is annotated with avoid to specify that

it should never be used if another production rule can be applied. The priority of the added

nonterminal PCDATA-JSON is lower than the original alternatives for XHtml-Inline.

The substitution placeholder is explicitly specified for the text part message by the syntacti-

cal type PCDATA-JSON. The template evaluator is allowed to replace it by human readable

text or JSON trees. The syntax-safe template evaluator using the grammar handles the

protection against JavaScript and/or CSS injection.

7.5.4 Unhackability

In order to verify the unhackability of the shout wall, the shout wall website is published

on-line including the source code. A number of web security experts are asked to find
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security breaches in the implementation. Two bugs were found in the first shout wall im-

plementation. First, that an input term containing a repeating pattern “{ "a",” caused a

crash of the web server. This was a result of a stack overflow in the parser and is solved by

fixing the stack overflow handling.

module XHtml−J son
2

i m p o r t s XHtml
4 i m p o r t s JSON

6 e x p o r t s
s o r t s PCDATA−JSON

8 c o n t e x t−f r e e s y n t a x
PCDATA−JSON −> XHtml−I n l i n e { a v o i d }

10 PCDATA∗ −> PCDATA−JSON
”< s c r i p t ” ”>” JSON ”</ s c r i p t >”

12 −> PCDATA−JSON

Fig. 7.37 Adding JSON as alternative for XHtml-Inline.

The second security issue was a cross-site scripting problem. The problem is inherent in

the JSON language specification [Crockford (2008)], which allows strings of the character

class

~[\0-\31\n\t\"\\]

This character class allows the symbols < and >, JavaScript encapsulated in a string is valid

conform this grammar, however Firefox 3.0.19 interprets this as JavaScript code stored

in JSON strings instead of handling it as data. This security breach is solved by limiting

the character class for JSStrChar by disallowing the symbols < and > in the grammar of

Figure 7.36. After these two errors were detected, no further security issues were found.

As discussed, the use of grammars in a syntax-safe template does not prevent all injection

attacks. However, having formalisms for grammar definitions and syntax-safe templates

provides a compact implementation of web applications. The use of languages at a higher

level of abstraction, such as grammar definitions, prevents making silly errors resulting

in security breaches. It is easier to examine the allowed sentences of a grammar than

inspecting manually written parsers and filters. When a security breach is found, it is easier

to repair it in a grammar, since grammars are compact and the formalism has a declarative

nature.
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7.5.5 Preventing Injections at the Door

A similar solution to prevent cross-site scripting and/or injection attacks is syntax embed-

dings presented by Bravenboer et al. [Bravenboer et al. (2007)]. This approach prevents

injection attacks in sentences of an embedded language, for example SQL, manipulated

in some host language, for example Java. It uses a grammar based on the host language

extended with syntax of the embedded language to achieve the safety. An API is gener-

ated from this grammar to provide the appropriate unparsing, escaping, and checking of

lexical values. The source code containing embedded syntax is translated to a file without

embedded syntax by replacing this foreign syntax with calls to the generated API.

Syntax embedding and templates share the concept of combining grammars, however, there

is a difference of the manipulated language. In case of syntax embeddings the language in

the strings is the object language, and in case of templates the object language is surround-

ing the metalanguage. This manifests itself in the construction of the grammars. The

grammars used for syntax embeddings are based on a metalanguage grammar where object

language nonterminals are injected as alternatives, while in template grammars the object

language grammar is extended with metalanguage constructs.

7.5.6 Evaluation

Cross-site scripting attacks are nowadays the number one security bug in web applications.

Syntax-safe templates can provide a solution to prevent cross-site scripting without intro-

ducing a lot of boilerplate and checking code. Grammars are used to specify allowed (sub)

sentences in the template instead of implementing the checks and filters for the input data

in the controller component. Filters and checks implemented in a general purpose language

contain a lot of detail, which make it hard to write, to maintain, to test and to validate these

manually implemented filters and checkers, especially for complex languages. Obviously,

the level of protection against injection attacks is dependent on the quality of the used

grammars. However, a context-free grammar definition is easier to write and maintain than

manually implemented checkers based on imperative constructs.

Beside the improved security during evaluation, parsing both XHTML and metalanguage

provides easier development of templates. An IDE for editing syntax-safe templates can

use the parse tree to report syntax errors directly in the editor. Syntax errors in the object

code and metacode are already detected before any web-page is generated.
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7.6 Conclusions

The compact metalanguage, as designed in Chapter 4, enforces to use the two-stage archi-

tecture. It is not possible to express all model transformations using the unparser-complete

metalanguage, as it is not possible to express calculations and store intermediate values.

This compact metalanguage complies with the recommendation of Parr [Parr (2004)] to a

metalanguage to enforce strict separation of model and view.

The benefits of the two-stage architecture based on templates are reflected in the reduced

number of lines of code of the two case studies ApiGen and NunniFSMGen. The reim-

plemented code generators are at least half the size of the original implementations. The

NunniFSMGen case study showed that the choice of the output language is made at the

template level, while the input data model is not changed. It is expected that the increased

separation of concerns in the reimplementation result in easier adding a new output lan-

guage to the reimplemented NunniFSMGen than adding a new output language to the orig-

inal implementation.

Table 7.4 shows the volume of all re-implemented code generators. Both case studies show

a reduction of code between the old implementation and the new implementation. The

reduction is accomplished first by using languages better suited for implementing code

generators, i.e. a term rewrite formalism and unparser complete metalanguage. Second,

by reducing the number of code clones in the generator by improving the separation of

concerns between the model transformation stage and code emitter stage.

Table 7.4 Metrics of the different case studies.

Metric
ApiGen

(old)
Apigen

(new)
NunniFSMGen

(old)
NunniFSMGen

(new)

Lines of Code 8,789 2,975 1,602 1,005

Lines of Code 7,296 2,361 1,430 738

(without blank lines)

The third case study shows that syntax-safety increases the safety of dynamic code gen-

eration in web applications. Cross-site scripting is prevented using grammars instead of

introducing boilerplate code and/or checking code. Only 168 lines of code are used to

implement the shout wall application.
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Conclusions

This book discussed the theory and application of templates in the context of code gen-

eration. Code generators can be implemented using different approaches and techniques,

including templates. A template is a text that contains placeholders. During evaluation of

the template, these placeholders are replaced to obtain an output text. Contemporary tem-

plate evaluators are text-based, not offering protection against syntax errors in the template

and syntax errors in the code they instantiate.

The central theme of this book is increasing the (technical) quality of code generators based

on templates. Both the technical quality of the code generator implementations as the tech-

nical quality of the generated code are involved. This book provides three main contribu-

tions. First, the maintainability of template based code generators is increased by speci-

fying unparser-completeness. Unparser-completeness defines the computational power a

metalanguage should at least, and at most, offer. This enforces separation of concerns

between model and view [Parr (2004)], and unparser-complete metalanguages are strong

enough to use in every code generator setting, see Sections 8.1 and 8.2. Second, syntactical

correctness of the templates and generated code can be ensured, see Sections 8.3 and 8.4.

Protection against syntax errors in the template provides a shorter development cycle, as

code does not need to be generated to detect syntax errors in the object code. Third, the

presented theory and techniques are validated by case studies, discussed in Section 8.5.

The three case studies showed that unparser-completeness lead to improved separation of

concerns. The limited computational power of unparse-complete metalanguages enforces

a strict separation of concerns between the model transformer and the code emitters. The

last case study also showed that syntax safe template evaluation provides out-of-the-box

protection against code injection attacks.

The next sections discuss the contributions per chapter.

191
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8.1 Unparser Completeness

Chapter 3 discussed the requirements for a metalanguage in the setting of code generation.

The metalanguage should prevent programming in the view, and it should be expressive

enough to instantiate every semantically correct sentence of the output language. The rela-

tions between concrete syntax, abstract syntax trees and their grammars are discussed. The

mapping of abstract syntax trees to concrete syntax, i.e. the unparser, showed the required

properties. Unparsers have two specific properties: parsing and desugaring its output re-

sults in the original abstract syntax tree of the used input, and unparsers can instantiate all

semantically correct sentences of the output language.

The main contribution of this chapter is that a linear deterministic top-down tree-to-string

transducer is strong enough to implement unparsers. A metalanguage for implementing

unparsers should at least be powerful enough to express a linear deterministic top-down

tree-to-string transducer, otherwise some sentences of the output language cannot be in-

stantiated. This tree-to-string transducer is less strong than a Turing-complete language,

and thus prevents programming in the view.

8.2 A Template Metalanguage

An unparser-complete metalanguage is presented in Chapter 4. This metalanguage pro-

vides two kernel constructs: subtemplates and match-replace placeholders. Also three de-

rived constructs are introduced: substitution placeholders, iteration placeholders and con-

ditional placeholders. These constructs are abbreviations for combinations of subtemplates

and match-replace placeholders.

To prevent writing model transformations in templates, an unparser-complete metalan-

guage cannot change the input data and it does not support complex expressions. This

enforces a clear separation of model and view.

The unparser-complete metalanguage is compared with metalanguages of other template

systems: ERb, Velocity, JSP and StringTemplate. ERb, JSP and Velocity offer a Turing-

complete metalanguage, while StringTemplate only supports basic functionality, like sub-

templates, substitution, iteration and conditions. An unparser for the PICO language is

implemented for each template environment to compare their metalanguages on the level

of expressiveness.
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The StringTemplate implementation of the PICO unparser has the fewest lines of code,

but in contrast with the unparser-complete metalanguage presented in this book, String-

Template cannot directly accept all regular trees. It can only handle unordered trees. An

extra transformation is necessary to convert the input data from an ordered tree to an un-

ordered tree accepted by StringTemplate.

ERb, Velocity and JSP come with a Turing-complete metalanguage. However, they do

not provide a block scoping mechanism for the metavariables. A workaround was nec-

essary for proper handling of metavariable scopes to implement the PICO unparser. This

workaround resulted in additional boilerplate code. Furthermore, rich metalanguages in-

crease the chance of undesired programming in templates, which can result in tangling of

concerns. An example of such a risk is the specification of model transformations inside a

template.

8.3 Syntactical Correctness of Templates

In Chapter 5 the topic is the syntactical correctness of templates. A grammar describing

the metalanguage, object language and the connection between both can be constructed.

Syntax errors in the object code and metacode of a template are detected while parsing

the template instead of dealing with syntax errors at compile time of the generated code.

The complete template is parsed, and thus checked for syntax errors. The syntax of the

templates is not different from text-templates, as a result they provide the same user expe-

rience.

The template grammar is obtained by combining the object language grammar and meta-

language grammar by adding the placeholder syntax as alternative to the object language

nonterminals. The construction of such a template grammar is generic. Only a combina-

tion grammar connecting both languages has to be defined manually. The advantage of this

approach is the ease of using off-the-shelf object language grammars.

8.4 Syntax-Safe Evaluation

Only parsing templates is not sufficient to guarantee that the output of the template evalu-

ator is a sentence of the output language. After parsing, it is still possible that a template

evaluator, unaware of the output language, can replace the placeholders with not allowed

sentences. Chapter 6 presents a syntax-safe template evaluation mechanism to prevent that

placeholders in a template are being replaced by syntactical incorrect constructs. This guar-
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antee is achieved by checking that the root nonterminal of the sub parse tree replacing a

placeholder is equal to the object language nonterminal where the placeholder is applied.

The presented evaluation strategy is independent of the object language and does not need

to be changed when another object language is used. It is even possible to use object code

containing multiple languages, like Java with embedded SQL. An implementation of this

template evaluation strategy, called Repleo, is provided to validate the practical applicabil-

ity of syntax-safe templates.

8.5 Case Studies

Chapter 7 presented three case studies using templates to validate the applicability of

unparser-complete metalanguages and syntax-safe templates. The first case study was

about the reimplementation of ApiGen. ApiGen is code generator for creating Java API’s

from a tree grammar to create, manipulate and query tree-like data structures. It covers the

generation of Java code based on the factory pattern and composite pattern. The second

case study discussed the reimplementation of NunniFSMGen. NunniFSMGen is a tool to

generate finite state machines from a transition table. It covers the generation of behav-

ioral code based on the state design pattern for different output languages. The last case

study presented a web application using templates to render XHTML code on demand of

an incoming request. The web application example is a ‘shout wall’, where someone could

leave a message.

The first two case studies showed that unparser-completeness in combination with the use

of a two-stage architecture results in an improved separation of concerns between the model

transformation and code emitters. The compact metalanguage, as designed in Chapter 4,

enforced the two-stage architecture, as it is not possible to express all model transforma-

tions in the templates. Albeit the metalanguage is not Turing-complete, this property does

not pop-up as a limitation for these case studies. This is also not expected, as unparser-

completeness guarantees that the metalanguage can be used to instantiate all semantically

correct sentences of a context-free languages. Also, the NunniFSMGen case study showed

that the intermediate representation between the model transformation and templates could

be used for all output languages. It was not necessary to implement output language spe-

cific model transformations. The benefits of the two-stage architecture are also reflected in

the reduced number of lines of code. The reimplemented code generators are two or three

times as small as the original implementations.

The last case study shows that syntax-safety increases the safety of dynamic code genera-
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tion in web applications. By nature, web applications have a big chance to be vulnerable

for cross-site scripting, i.e. injection malicious code in the HTML output via user input.

Grammars are used to specify the allowed (sub) sentences in the XHTML template instead

of implementing the checks for the input data in the controller component of a web appli-

cation. This case study showed that cross-site scripting is prevented without introducing

boilerplate code and checking code.
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