
Less is More: Unparser-completeness of
Metalanguages for Template Engines

B.J. Arnoldus M.G.J. van den Brand A. Serebrenik
Technische Universiteit Eindhoven

Eindhoven, The Netherlands
B.J.Arnoldus@alumnus.tue.nl, {M.G.J.v.d.Brand, A.Serebrenik}@tue.nl

Abstract
A code generator is a program translating an input model into code.
In this paper we focus on template-based code generators in the
context of the model view controller architecture (MVC).

The language in which the code generator is written is known as
a metalanguage in the code generation parlance. The metalanguage
should be, on the one side, expressive enough to be of practical
value, and, on the other side, restricted enough to enforce the
separation between the view and the model, according to the MVC.

In this paper we advocate the notion of unparser-complete meta-
languages as providing the right level of expressivity. An unparser-
complete metalanguage is capable of expressing an unparser, a
code generator that translates any legal abstract syntax tree into an
equivalent sentence of the corresponding context-free language. A
metalanguage not able to express an unparser will fail to produce
all sentences belonging to the corresponding context-free language.
A metalanguage able to express more than an unparser will also be
able to implement code violating the model/view separation.

We further show that a metalanguage with the power of a linear
deterministic tree-to-string transducer is unparser-complete. More-
over, this metalanguage has been successfully applied in a non-
trivial case study where an existing code generator is refactored
using templates.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation; D.2.3 [Software Engi-
neering]: Coding Tools and Techniques—Pretty printers

General Terms Languages

Keywords code generation, templates, unparser

1. Introduction
Code generators are programs translating input models to code.
They can be seen as meta-programs since they manipulate code,
i.e. code occurs both as data (object code) and as an executed ar-
tifact (meta-code). One traditionally distinguishes between homo-
geneous and heterogeneous code generators [24]. In homogeneous
code generators the metalanguage and object language coincide.
In heterogeneous code generators the metalanguage and the object

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0689-8/11/09. . . $10.00

f o r e a c h ($ p r o d u c t i n $ a l l P r o d u c t s)

<l i>$p roduc t </ l i>
end
</u l>

Figure 1. HTML code for a list of products.

language may differ. A heterogeneous code generator can be imple-
mented by means of, e.g., print statements, abstract syntax trees in-
stantiation, term rewriting and templates [18, 21, 28]. In this paper
we consider heterogeneous code generators, and more specifically,
template-based code generators.

One of the most well-known applications of template-based
code generation is the HTML generation in dynamic web appli-
cations, where each HTML page is generated on a user request.
Templates can be also used in broader context, e.g., for generating
data model classes and state machine pattern implementations. In
general, templates can be seen as fragments of object code inter-
mitted with holes, containing instructions expressed in the meta-
language. When a template engine processes a template it directly
emits the object code to the output, and evaluates the instructions in
the holes with respect to the input data. For example, the template in
Figure 1, expressed in the Velocity Template Language [25], gen-
erates HTML code for a list of products given in the input data.
Numerous template-based engines are available, including JSP [4],
Velocity [25] and StringTemplate [21]. Every template engine has
its own metalanguage and evaluation strategy. With the notable
exception of the metalanguage of StringTemplates, most metalan-
guages lack a formal requirements definition.

The main contribution of this paper consists in formalizing the
requirements for a metalanguage of a template engine in the con-
text of the model view controller architecture. Intuitively, the meta-
language should be, on the one side, expressive enough to be useful
for practical applications, and, on the other side, it should be re-
stricted enough, to disallow, e.g., the view to modify the model. We
claim that the right balance can be found by demanding from the
metalanguage to be unparser-complete, i.e., to be able to express
an unparser and not more than an unparser. Section 2 presents the
intuition behind this claim. After introducing a number of prelim-
inary notions in Section 3, in Section 4 we formalize the notion of
an unparser and in Section 5 the related notion of the desugar func-
tion. Unparser-completeness is introduced in Section 6 closing the
discussion of the theoretical framework.

A complementary task of showing practical power of unparser
complete metalanguages, is the second contribution of this paper.
We have designed our own metalanguage discussed in Section 7
and conducted a number of case studies. One of these case studies,

137

Input data
Trans-
former

Intermediate
format

Code
gen-

erator

Generated
code

Figure 2. Two-stage architecture.

reimplementation of a finite-state machine generator NunniFSMGen
is discussed in Section 8. Finally, related work is briefly reviewed
in Section 9, and Section 10 concludes.

2. Requirements
In this section, we formulate the requirements for a template meta-
language. We focus on the usage of templates in the context of the
model view controller architecture (MVC) [19] and heterogeneous
code generators. In MVC architecture, templates are commonly
used to implement the view of the internal data of an application
(model). A view can be rendering the HTML for a set of data from
the database in case of web applications (cf. the code fragment in
Section 1), or converting a given abstract syntax tree into code.

The MVC architecture decouples the models and its transforma-
tions from the view components, hereby reducing the complexity
and increasing the flexibility of the system. This separation of con-
cerns also allows different views for the same underlying model.
We show in Section 8 the benefits of MVC in the context of a code
generator. The same model is used for different target languages,
resulting in less code-clones than the original implementation.

While in the original paper on MVC [19] the view was expected
to send editing messages to the model, already in [7] this function-
ality was restricted to the controller, and the view was only allowed
to receive the messages from the model to update the way the model
is shown. This intuition was formalized in [21], where it has been
argued that the view should neither alter the model nor perform cal-
culations depending on the semantics of the model. Unfortunately,
the separation of view and logic is not enforced in existing template
engines, such as JSP, i.e., it is possible to write JSP templates with
all logic in a single file. Typically, such a file will contain fragments
in HTML, JSP-tags, Java, and SQL. Not only does this file violate
the MVC architecture principle, because logic (model) and presen-
tation (view) are not separated, but it is also hard to understand the
file due to different escaping characters required to support multi-
ple programming languages, executed at different stages.

Separation of model and view results in a two-stage architec-
ture (see Figure 2). In a two-stage architecture, the template is
solely responsible for instantiating a view based on the interme-
diate representation. i.e. the model. The input model is provided by
the first stage that can implement calculations and transformations.
This separation is not formalized in this article, however, intuitively
its place is at the point where the code generator only has to han-
dle target language specific issues. For example, in case of a web
application the first stage implements the business logic responsi-
ble for fetching data from a database and preparing it for the actual
HTML and/or PDF generation, while the HTML generation is car-
ried out during the second stage and PDF generation using another
implementation in the second stage. It is also possible to have an
n-stage architecture, although, the n-stage architecture can be seen
as a two-stage architecture, where the transformer and/or the code
generator exist of multiple stages.

In order to enforce the two-stage architecture, the language of
the templates should be restricted. For instance, it should not in-
clude constructs for performing calculations, in order to make sure
that all calculations are carried out before the templates are evalu-
ated, i.e., during the first stage. However, in order to be practical,

the language of the templates should be expressive enough. Indeed,
a too restrictive metalanguage limits the applicability of the meta-
language, and thus of the template engine. Hence, we require the
metalanguage to be able to implement code generators, which can
produce every (correct) sentence of the output language. A code
generator that can produce every sentence of the output language
given an abstract syntax tree is called an unparser. The unparser
is a special kind of code generator, transforming an abstract syntax
tree to a concrete syntax, such that if the emitted concrete syntax
is parsed then the input abstract syntax tree is obtained again, i.e.
the semantics are not altered by the unparser. Unparsers are closely
related to pretty printers [20] that in addition to producing every
sentence of the output language given an abstract syntax tree take
care of an appropriate layout.

3. Preliminaries
We start with a number of basic definitions and declarations of
symbols used throughout this paper. We assume the reader to be
familiar with the formal language theory and basics of the tree
language theory [9, 15]. In this section we present the notation used
and recall the most important definitions.

Integer variables are denoted k, i, j, p and r. Formal languages
are sets of words, i.e., finite sequences of symbols derived from a
finite set of symbols, known as an alphabet and denoted as Σ. The
set of all words over Σ is denoted Σ∗. Every symbol c of Σ is
associated with a unique non-negative integer, known as the rank
of c and denoted rc. The rank is equal to the number of children
a node representing the symbol will have. We further use f to
denote alphabet symbols with rank greater than 0. Σr for the set
of symbols of rank r. X is a set of symbols called variables and we
assume that the sets X and Σ0 are disjoint. x is a variable x ∈ X
and is not used for integer values.

An important class of formal languages are the context-free lan-
guages, i.e., languages specified by a context-free grammar [15]:

Definition 3.1 (Context-free grammar and language). A context-
free grammar (CFG) is a four-tuple 〈Σ,N, S,Prods〉, where Σ is
the alphabet, N is a finite set such that N ∩ Σ = ∅, S ∈ N is the
start symbol and Prods is a finite set of production rules of the form
n→ z where n ∈ N and z ∈ (N ∪Σ)∗. A context-free language
L(G) is the set of words generated by the context-free grammarG.
The set N is known as the set of nonterminal symbols.

For the sake of simplicity in this paper we focus on LALR gram-
mars [10]. Our approach can be adapted to grammars with ambi-
guity by introducing ambiguity nodes and indicating the preferred
derivations similarly to [26].

A regular tree language is a set of trees generated by a regular
tree grammar [9]:

Definition 3.2. (Regular tree grammar). A regular tree grammar
(RTG) is a four-tuple 〈Σ,N, S,Prods〉, where Σ is the alphabet;
N is a finite set of nonterminal symbols with rank r = 0 and
N ∩ Σ = ∅; S ∈ N is a start symbol; Prods is a finite set
of production rules of the form n → t, where n ∈ N and
t ∈ Tr(Σ∪N), where Tr(Σ∪N) is the set of trees overΣ andN .

Example 3.3. Let G be 〈Σ,N, S,Prods〉, where Σ = {a, b} with
ra = 0 and rb = 2, N = {S} and Prods = {S → b(S, S), S →
a}. The grammar G is a regular tree grammar representing binary
trees, and its language

L(G) = {a, b(a, a), b(b(a, a), a), b(a, b(a, a)), . . .}

is a regular tree language. �

Next we introduce the notion of a linear tree homomorphism:

138

parse

layout

L(Gcfg)

yield

L(Gpt)

desugar

L(Gast)

unparse

Figure 3. Relations between languages and their grammars.

E

E

L

ε

T

T

F

˜ L

ε

F

true L

C L

ε

& L

C L

ε

F

false L

C L

ε

| L

C L

ε

T

F

true L

ε

Figure 4. A parse tree of ~true & false | true obtained with
respect to the production rules of Example 4.1.

Definition 3.4. (Tree homomorphism) [9]. Let Σ and Σ′ be two
not necessarily disjoint ranked alphabets. For each k > 0 such
that Σ contains a symbol of rank k, we define a set of variables
Xk = {x1, . . . , xk} disjoint from Σ and Σ′.

Let hΣ be a mapping which, with c ∈ Σ of rank k, associates
a term tc ∈ Tr(Σ′, Xk). The tree homomorphism h : Tr(Σ) →
Tr(Σ′) is determined by hΣ as follows:

� h(a) = ta ∈ Tr(Σ′) for each a ∈ Σ of rank 0,
� h(c(t1, . . . , tn)) = tc{x1 ← h(t1), . . . , xk ← h(tk)}

where tc{x1 ← h(t1), . . . , xk ← h(tk)} is the result of
applying the substitution {x1 ← h(t1), . . . , xk ← h(tk)} to
the term tc.

hΣ is called a linear tree homomorphism when no tc contains two
occurrences of the same xk. Thus a linear tree homomorphism
cannot duplicate trees.

Example 3.5. (Tree homomorphism) [9]. Let Σ = {g(, ,), a, b}
and Σ′ = {f(,), a, b}. Let us consider the tree homomorphism h
determined by hΣ defined by: hΣ(g) = f(x1, f(x2, x3)), hΣ(a) =
a, hΣ(b) = b. For instance, we have: If t = g(a, g(b, b, b), a), then
h(t) = f(a, f(f(b, f(b, b)), a)).

4. Unparser
As already stated in Section 2, our expressivity requirements for
metalanguages of template engines are based on the notion of the
unparser. An unparser translates an abstract syntax tree represent-
ing a sentence into a textual representation of the sentence [6]. An
unparser can be seen as a part of the “circle of code” shown in Fig-
ure 3, i.e. the circle from concrete syntax to parse tree to abstract
syntax and back to concrete syntax. The textual representation of
a program obeying a context-free grammar (L(Gcfg) in Figure 3)
can be parsed to obtain the corresponding parse tree (L(Gpt)). The
set of parse trees of a context-free grammar is a regular tree lan-
guage [9].

Since the parse tree contains exactly the same information as
the textual representation, the textual representation can be restored
using the parse tree. The corresponding mapping from L(Gpt)
to L(Gcfg) is called yield [9]. Alternatively, one can desugar the
parse tree, i.e., simplify it by removing the semantically-irrelevant
layout information. In this way, an abstract syntax tree (L(Gast)) is
obtained. Finally, the unparse function closes the circle and maps
elements of L(Gast) to L(Gcfg).

Example 4.1. To illustrate the functions in Figure 3 consider the
following set of production rules:

E→ L T F→ “˜” L F L→ C L
E→ E “|” L T F→ “(” L E “)” L L→ ε
T→ F F→ “true” L C→ “ ”
T→ T “&” L F F→ “false” L C→ “\n”

The parse tree of ~true & false | true with respect to
these production rules is shown in Figure 4. In the running text
we also write a parse tree as a term n(s1, t

′
1, s2, . . . , sr, t

′
r, sr+1),

where t′1 . . . t′r are sub parse trees with top nonterminals n1 . . . nr
and strings s1 . . . sr+1 are the terminals.

The sentence ~true & false | true can be restored by ap-
plying yield to the tree in Figure 4. The desugar function provides
a mapping of concrete syntax constructs (e.g., & and true) to ab-
stract syntax constructs (And and True, respectively), applying the
desugar function to the parse tree results in the abstract syntax tree
Or(And(Not(True),False), True). The abstract syntax tree can be
unparsed to ~true&false|true. Observe that while the applica-
tion of unparse◦desugar◦parse produces a semantically equivalent
sentence, layout preservation is not guaranteed. �

As suggested by the example, an abstract syntax tree corre-
sponds to multiple semantically-equivalent textual representations,
while unparse necessarily produces only one of these representa-
tions. This is why the set of context-free sentences is larger than
the range of unparse, i.e.,

L(Gcfg) ⊇ unparse(desugar(parse(L(Gcfg)))) (1)

Moreover, the unparser is correct if and only if re-parsing its out-
put sentences produce the same abstract syntax trees as the original
inputs [22]. This correctness requirement means that the combina-
tion of unparse and desugar should not alter the meaning of the
code represented by the concrete syntax or the abstract syntax:

L(Gast) = desugar(parse(unparse(L(Gast)))) (2)

Our intention is to derive the unparse function from the context-
free grammar of the output language. However, in order to generate
a textual representation from an abstract syntax tree the unparser
should be aware of the mapping between concrete syntax constructs
and abstract syntax constructs, akin to the one mentioned in Exam-
ple 4.1. One possible way to construct the mapping is by means
of heuristics [29]. However, this approach will introduce machine
generated names for the abstract syntax tree nodes. In order to re-
tain the full control of the abstract syntax constructs, we propose to

139

integrate abstract syntax constructs (signature labels) in the produc-
tion rules of a context-free grammar. Formally, a production rule
in the augmented context-free grammar has the form n → z{c}
where n ∈ N , z ∈ (N

⋃
Σ)∗ and c is an element of an alpha-

bet Σ′. The set Σ′ is the alphabet of the regular tree grammar be-
longing to the abstract syntax and is not necessarily disjoint from
N
⋃
Σ. We furthermore require a signature label c to be used at

most once. In order to remove the layout syntax and other superflu-
ous syntax, it is allowed, under strict conditions, to have production
rules without signature labels. These conditions are in the case of:

� Layout syntax - The nonterminals belonging to the layout syn-
tax, such as whitespaces and comment, should not be defined
with a signature label. The desugar function, as defined in Sec-
tion 5, removes these syntax from the tree. It is mandatory, that
the layout syntax includes the empty string ε, as the layout is
not restored by the automatic derived unparser.

� Chain rules - It is allowed that production rules of the form
n1 → n2, are not accompanied with a signature label. The
abstract syntax belonging to n2 is propagated to n1, which is
allowed, since all signature labels are unique. Furthermore, it is
allowed that n2 is surrounded by layout nonterminals, as these
layout syntaxes contain the empty string.

Example 4.2. (Augmented context-free grammar)

E→ L T F→ “˜” L F {Not} L→ C L
E→ E “|” L T {Or} F→ “(” L E “)” L {Br} L→ ε
T→ F F→ “true” L {True} C→ “ ”
T→ T “&” L F {And} F→ “false” L {False} C→ “\n”

The production rules above show the extension of a context-free
grammar of Example 4.1 with signature labels. �

In presence of signature labels we further adapt the term no-
tation for the parse trees and write parse(s1 · s′1 · s2 · . . . · sr ·
s′r · sr+1) =< n, c > (s1, t

′
1, s2, . . . , sr, t

′
r, sr+1), where n is

the top non-terminal, t′1 . . . t′r are sub parse trees with top nonter-
minals n1 . . . nr , strings s1 . . . sr+1 are the terminals and c is the
label associated with n → s1, n1, s2, . . . , sr, nr, sr+1. If there is
no such label, parse(s1 · s′1 · s2 · . . . · sr · s′r · sr+1) is defined
as n(s1, t

′
1, s2, . . . , sr, t

′
r, sr+1). Furthermore, the function parse

used in this article is complete.
For a context-free grammar extended with signatures we can

derive unparse. For each production rule in the context-free gram-
mar there is a case in the definition of unparse, called an action,
allowing unparse to traverse the abstract syntax tree and to restore
terminals whenever needed. For instance, in Example 4.1, given
the production rule T → T “&” L F {And}, the definition of
the unparser should have an action for unparse(And(x, y)). In gen-
eral, each action in unparse has a left-hand side and a right-hand
side, see Example 4.5. First, we provide the definition to derive an
unparser from a given context-free grammar.

Definition 4.3. (Unparse). Let Gcfg = 〈Σ,N, S,Prods〉 be a
context-free grammar augmented with signature labels, where
N ′ is the set of non-terminals defined by the production rules
with a signature label. Then, the corresponding function unparse
is defined by a set of actions Actions such that for any n →
z1 . . . zk{c} ∈ Prods

� either mkLhs(z1, . . . , zk, 1) 6= ε and
unparse(c(mkLhs(z1, . . . , zk, 1))) = mkRhs(z1, . . . , zk, 1)
∈ Actions,
� or mkLhs(z1, . . . , zk, 1) = ε and

unparse(c) = mkRhs(z1, . . . , zk, 1) ∈ Actions,

where
mkLhs(i) = ε
mkLhs(z1, z2, . . . , zj , i) =

mkLhs(z2, . . . , zj , i+ 1) if z1 /∈ N ′
xi,mkLhs(z2, . . . , zj , i+ 1) if z1 ∈ N ′and

mkLhs(z2, . . . , zj , i+ 1) 6= ε
xi otherwise

and
mkRhs(i) = ε
mkRhs(z1, z2 . . . , zj , i) = z1 · mkRhs(z2, . . . , zj , i+ 1) if z1 ∈ Σ

unparse(xi) · mkRhs(z2, . . . , zj , i+ 1) if z1 ∈ N ′
mkRhs(z2, . . . , zj , i+ 1) if z1 /∈ (N ′ ∪Σ)

and · denotes the string concatenation operation.

Example 4.4. We illustrate Definition 4.3 with the production rule
T → T “&” L F {And} from Example 4.2. Then, the set N ′

of non-terminals corresponding to production rules with signature
information is {E, F,T}. Hence, “&” and L should be omitted from
the left-hand side of the unparser action:

mkLhs(T, “&”,L, F, 1) = x1,mkLhs(“&”,L, F, 2)
= x1,mkLhs(L, F, 3) =
= x1,mkLhs(F, 4) =
= x1, x4

since mkLhs(5) = ε. Similarly, for the right-hand side of the action
we ignore L:

mkRhs(T, “&”,L, F, 1) = unparse(x1) · mkRhs(“&”,L, F, 2) =
unparse(x1) · “&” · mkRhs(L, F, 3) =
unparse(x1) · “&” · mkRhs(F, 4) =
unparse(x1) · “&” · unparse(x4) · mkRhs(5) =
unparse(x1) · “&” · unparse(x4) · ε =
unparse(x1) · “&” · unparse(x4)

Since mkLhs(T, “&”,L, F, 1) 6= ε, the action corresponding to
T→ T “&” L F {And} is unparse(And(x1, x4)) = unparse(x1) ·
“&” · unparse(x4). �

In general, the left-hand side matches on a node in the abstract
syntax tree with the signature label c and the variables x1, . . . , xk
are assigned to the subtrees belonging to the label c. Following the
previous definition, the rank of c, i.e., the number of arguments of
c created by mkLhs, is not necessarily equal to k: the rank of c is
equal to the number of nonterminals in the pattern of the production
rule labeled c in the augmented context-free grammar. Therefore,
the variable xi only exists in the action unparse(c(. . .)) = . . . if
a symbol at index i in the right-hand side of the corresponding
production rule is a nonterminal n ∈ N ′. The right-hand side
constructs a string s1·. . .·sk. The number of strings k is equal to the
number of symbols in the pattern of the corresponding production
rule. Each si is either a string or a recursive unparser invocation.
Specifically, si is a string, if a terminal is defined at index i in the
production rule; an unparser invocation, if a nonterminal n ∈ N ′ is
defined at position i, and ε for the remaining case if ni /∈ (N ′∪Σ).

Example 4.5. Example 4.4, continued. Given the aforementioned
production rules, the following unparser is derived:

unparse(Not(x3)) = “˜” · unparse(x3)
unparse(And(x1, x4)) = unparse(x1) · “&” · unparse(x4)
unparse(Or(x1, x4)) = unparse(x1) · “|” · unparse(x4)
unparse(Br(x3)) = “(” · unparse(x3) · “)”
unparse(True) = “true”
unparse(False) = “false”

�

140

The unparser derived according to Definition 4.3 is linear and
deterministic. We say that an unparser is linear if for each action
in the unparser and every xi in the action, xi occurs not more
than once in the action’s right-hand side. The unparser is called
deterministic if actions have incompatible left-hand sides, i.e., for
every tree there exists only one applicable unparser action.

Theorem 4.6. The unparser derived according to Definition 4.3 is
linear and deterministic.

Proof. Linearity follows from Definition 4.3: every variable ap-
pearing on the right hand side appears only once. Recall that a
signature label c is used once in the augmented context-free tree
grammar. A signature label c directly corresponds to one action in
unparse(c(x1, . . . , xk)). Since a signature label c is used for only
one production rule, the left-hand sides of the unparser are unique
and thus the unparser is deterministic.

Definition 4.3 also ensures that unparse always terminates if
its argument is a finite tree. Recall that unparse(. . .) for n →
z1 . . . zk{c} distinguishes between mkLhs(z1, . . . , zk, 1) = ε and
mkLhs(z1, . . . , zk, 1) 6= ε. However, mkLhs(z1, . . . , zk, 1) = ε
holds only if zi ∈ Σ for all i, 1 ≤ i ≤ k. Therefore, the
right-hand side expression mkRhs(z1, z2 . . . , zk, 1) = z1 · . . . ·
zk and unparse is defined as unparse(c) = z1 · . . . · zk. Since
the right-hand side of the latter equation does not contain calls
to unparse, it cannot introduce non-termination. The remaining
case we have to consider is mkLhs(z1, . . . , zk, 1) 6= ε. In this
case unparse is defined as unparse(c(mkLhs(z1, . . . , zk, 1))) =
mkRhs(z1, . . . , zk, 1). Termination stems from the fact that every
variable appearing on the right hand-side appears in the left-hand
side, and from the reduction in the term size between the left-hand
side and the right-hand side terms.

We cannot yet prove that the unparser of Definition 4.3 satisfies
(1) and (2) as the desugar function is still to be defined.

5. Desugaring
The desugar function can be manually defined in the parser defi-
nition, like in parser implementations such as YACC [17]. These
parsers allow to associate a semantic action with a production rule
in the grammar, such that the semantic actions can directly instan-
tiate an abstract syntax tree. A manually defined desugar function
must define a linear tree homomorphism, as we argue later on, oth-
erwise regularity of the abstract syntax tree is not guaranteed.

Having a context-free grammar with signature labels, the ab-
stract syntax tree can be automatically instantiated from a parse
tree. This is executed by the desugar function, which replaces the
nodes in the parse tree with new nodes, which are labeled by signa-
ture labels. The rank of signature label c is equal to the number of
nonterminals in the corresponding production rule of the context-
free grammar. Nodes in the parse tree without a signature label are
removed from the tree. This mechanism is responsible for removing
the nodes that do not contain semantically significant information,
such as chain rules and layout syntax.

Definition 5.1. (Desugar). The desugar function is defined by the
following equations:

desugar(x) = ε if x ∈ Σ
desugar(f(x1, . . . , xk)) = dc(x1, . . . , xk)
desugar(< f, c > (x1, . . . , xk)) ={

c if dc(x1, . . . , xk) = ε
c(dc(x1, . . . , xk)) if dc(x1, x2, . . . , xk) 6= ε

and
dc() = ε
dc(x1, x2, . . . , xk) =

dc(x2, . . . , xk) if x1 ∈ Σ
desugar(x1), dc(x2, . . . , xk) if x1 /∈ Σ and

dc(x2, . . . , xk) 6= ε
desugar(x1) otherwise

Example 5.2. (Desugar). Applying the desugar function to the
parse tree t of ~true & false | true using the grammar of
Example 4.2 will result in the abstract syntax tree: desugar(t) =
Or(And(Not(True),False), True). �

Observe that Definition 5.1 ensures termination of desugar as
long as its argument is a finite tree. Indeed, each subsequent call
to desugar or dc reduces the size of the input argument either by
removing the function symbol, e.g., desugar(f(x1, . . . , xk)) =
dc(x1, . . . , xk) or by reducing the number of arguments in the call,
e.g., dc(x1, x2, . . . , xk) = dc(x2, . . . , xk).

Theorem 5.3. The abstract syntax tree obtained by applying the
desugar function to a parse tree belongs to a regular tree lan-
guage [8].

Proof. Recognizability of trees by finite tree automata is closed
under linear tree homomorphism [11]. The desugar function is a
linear tree homomorphism; subtrees are only removed and not du-
plicated. Since the abstract syntax tree is a linear tree homomor-
phism of the parse tree and the set of parse trees of a context-free
language is a regular tree language [9], the abstract syntax tree be-
longs to a regular tree language.

6. Unparser Completeness
We call a metalanguage capable to express unparsers unparser-
complete. In this section we show that unparser-completeness is a
more restricted notion than Turing-completeness. To establish this
result we (1) show that the unparser as defined in Definition 4.3
can be expressed by a linear deterministic top-down tree-to-string
transducer, and (2) recall that the top-down tree-to-string transducer
is strictly less powerful than a Turing machine, i.e., top-down-tree-
to-string transducers accept are a subset of the languages Turing
machines can accept [27].

Definition 6.1. (Top-down tree-to-string transducer) [12]. A top-
down tree-to-string transducer is a 5-tupleM = 〈Q,Σ,Σ′, q0, R〉,
where Q is a finite set of states, Σ is the ranked input alphabet, Σ′

is the output alphabet, q0 ∈ Q is the initial state, and R is a finite
set of rules of the form:

q(σ(x1, . . . , xk))→ s1q1(xi1)s2q2(xi2) . . . spqp(xip)sp+1

with k, p ≥ 0; q, q1, . . . , qp ∈ Q; σ ∈ Σk; s1, . . . , sp+1 ∈ Σ′∗,
and 1 ≤ ij ≤ k for 1 ≤ j ≤ p (if k = 0 then the left-hand
side is q(c)). M is called deterministic if different rules in R have
different left-hand sides. M is called linear if, for each rule in R,
no xi occurs more than once in its right-hand side.

Example 6.2. Unparser in Example 4.5 can be seen as a top-down
tree-to-string transducer 〈Q,Σ,Σ′, q0, R〉 such that the set of
states Q = {unparse}, the input alphabet Σ = {Not,And,Or,Br,
True,False}, the output alphabet Σ′ = {“˜”, “&”, “|”, “(”, “)”,
“true”, “false”} and the finite set of rules R is given by actions
defining the unparser in Example 4.5.

Next we show that for each context-free grammar an unparser
can be defined using a linear and deterministic top-down tree-to-
string transducer. Furthermore, any unparser corresponding to Def-
inition 4.3 can be mapped on a top-down tree-to-string transducer.

141

Theorem 6.3. An unparser based on a linear deterministic top-
down tree-to-string transducer can be defined for every context-free
grammar augmented with signature labels.

Proof. We show thatL(Gast) = desugar(parse(unparse(L(Gast))))
for the production rules of the form n→ s1n1s2 . . . srnrsr+1{c}.

Every production rule in a context-free grammar can be pro-
jected on the form n→ s1n1s2 . . . srnrsr+1{c}, where s1, . . . ,
sr+1 are strings and may be the empty string ε, and n, n1, . . . , nr
are the nonterminals. In case the pattern s1s2 occurs, the strings
can be concatenated into a new string s′1. We assume that the
augmented grammar meets the requirements for augmenting a
grammar with signature labels as sketched in Section 4. The
abstract syntax tree belonging to this production rule tast =
c(t1, . . . , tr), where t1, . . . , tr are the abstract syntax trees be-
longing to n1 . . . nr . The corresponding tree-to-string transducer
rule is: q(c(x1, . . . , xr)) → s1q1(x1)s2 . . . srqr(xr)sr+1, where
q, q1, . . . , qr are transducer states. Application of the transducer
to the abstract syntax tree consists in matching the tree against
the pattern c(x1, . . . , xr) and replacing it with a string originat-
ing from s1q1(x1)s2 . . . srqr(xr)sr+1, where q1(x1), . . . , qr(xr)
have been recursively applied to t1, . . . , tr , i.e., q(c(t1, . . . , tr)) =
s1 · s′1 · s2 · . . . · sr · s′r · sr+1, where s′1 = q1(t1) . . . s′r = qr(tr).
In Section 7 this match-replace intuition will be used to define an
eponymous construct in our unparser-complete metalanguage.

Parsing s1·s′1·s2·. . .·sr·s′r·sr+1 produces a parse tree parse(s1·
s′1 ·s2 · . . . ·sr ·s′r ·sr+1) =< n, c > (s1, t

′
1, s2, . . . , sr, t

′
r, sr+1),

where t′1 . . . t′r are sub parse trees with top nonterminals n1 . . . nr
and strings s1 . . . sr+1 are the terminals. The abstract syntax tree
is desugar(< n, c > (s1, t

′
1, s2, . . . , sr, t

′
r, sr+1)) = c(t1 . . . tr),

where t1 = desugar(t′1), . . . , tr = desugar(t′r), which is equal
to the original abstract syntax tree. Since this relation holds for
every production rule in a context-free language, the unparser can
be defined using a top-down tree-to-string transducer for every
context-free language.

The proof that L(Gcfg) ⊇ unparse(desugar(parse(L(Gcfg))))
also holds is very similar to the proof of Theorem 6.3. One should
take the string s as starting point instead of the abstract syntax
tree. The superset relation is a result of the fact that layout is
not available in the abstract syntax tree and as a result it cannot
be literally restored during unparsing. The language produced by
the unparser is thus always a sentence of L(Gcfg), but the set
of sentences of L(Gcfg) is greater than the set of sentences the
unparser can produce.

Theorem 6.4. The relation L(Gcfg) ⊇ unparse(desugar(parse(
L(Gcfg)))) holds for the unparser.

Proof. First, similarly to the proof of Theorem 6.3, the relation

L(Gast) = desugar(parse(unparse(L(Gast))))

holds when using a context-free grammar without production rules
for layout syntax. Next we extend L(Gcfg) with layout syntax re-
sulting in L(Gcfg)

′, then L(Gcfg)
′ ⊃ L(Gcfg), since every sentence

without layout must be inL(Gcfg)
′, otherwise the languages are not

semantical equal. Thus every sentence the unparser produce must
be at least inL(Gcfg), otherwise the unparse function does not meet
the requirement of the unparser to be semantically transparent.

The last step is that we show that the unparser is linear and
deterministic.

Theorem 6.5. The unparser of Definition 4.3 is a linear and deter-
ministic top-down tree-to-string transducer.

<: match :>
<: M a t c h p a t t e r n =:> S t r i n g
. . .
<: M a t c h p a t t e r n =:> S t r i n g

<: end :>

Figure 5. Match-replace construct.

Proof. The derivation of an unparser using Definition 4.3 can be
mapped on a top-down tree-to-string transducer. Considering Defi-
nition 4.3 the unparser contains actions of the form:

unparse(c) = s

unparse(c(x1, . . . , xk)) = s1 · unparse(x1) · . . . · sk
· unparse(xk) · sk+1

The similarity with the top-down tree-to-string transducer is obvi-
ous. Substitute the occurrences of unparse by states named q and
the unparser becomes a tree-to-string transducer.

The unparser is linear, since each xi occurs once on the left-
hand side and once on the right-hand side.

The unparser is also deterministic, since it is derived from a
context-free grammar augmented with signature labels, where each
signature label is only used for one production rule.

These theorems show that an unparser can be specified using a
linear deterministic top-down tree-to-string transducer.

So far we have shown that the unparser as defined in Defini-
tion 4.3 can be expressed by a linear deterministic top-down tree-to-
string transducer. Recall that the top-down tree-to-string transducer
is strictly less powerful than the Turing machine, i.e., top-down-
tree-to-string transducers accept a subset of the languages Turing
machines can accept [27]. Indeed, the class of tree languages a top-
down tree-to-string transducer can recognize is equal to its corre-
sponding finite tree automaton [12]. Unlike a Turing machine, a
top-down tree-to-string transducer cannot change the input tree on
which it operates but only emit a string while processing the input
tree. The class of languages the top-down tree-to-string transducer
accepts is the class of path-closed tree languages [27], being a sub-
set of regular tree languages [9]. One can show that the languages
of abstract syntax trees of the augmented grammar are path-closed,
since a signature label is only used for one production rule.

7. Metalanguage
To verify the usefulness of unparser-completeness metalanguages
in practice, we have designed a metalanguage for templates and
applied it in a number of case studies, including a redesign of a
domain-specific language for web information systems, reimple-
mentation of the Java-back end of a tree-like data structures ma-
nipulation library ApiGen [5], dynamic XHTML generation and
reimplementation of the state-machine-based code generator Nun-
niFSMGen. In the current section we focus on the metalanguage
itself, while in Section 8 we present the NunniFSMGen case study,
and discussion of other case studies can be found in [2]

The metalanguage provides three constructs: match-replace,
subtemplate invocation and substitution. The match-replace (Fig-
ure 5) is a construct containing a set of match-rules with a tree
pattern and an accompanying result string. The result string may
contain metalanguage constructs, which are evaluated recursively.

The match-replace matches the match-patterns against the cur-
rent input tree in the context. At the start of evaluation, this is the
complete input tree. In case a match-pattern is valid, the match-
replace starts evaluating the string belonging to the match-rule. In
the match-pattern variables may be bound, which can be used while

142

evaluating the string belonging to the match-rule. After the string
is evaluated, the result is used to replace the match-replace. This
construct enables tree-matching, like the left-hand side of the state
rules of the tree-to-string transducer.

The second construct is subtemplate invocation. Subtemplates
allows to divide a template in multiple smaller units, but more
important for unparser-completeness, is that this construct en-
ables recursion. Two constructs are necessary to implement sub-
templates, namely the declaration of subtemplates and the sub-
template call. The concrete syntax of a subtemplate declaration
is IdCon[String], while the syntax of a subtemplate call is
<: IdCon(Expr) :>. For instance, Figure 6 contains a sub-
template declaration unparse [...] , Lines 1–10 and five recursive
subtemplate calls, e.g., <:unparse($x):> in Line 3. The template
evaluator selects the subtemplate based on the identifier and it re-
places the subtemplate call with the string resulting from the eval-
uated subtemplate. The Expr is used to obtain a new input data
context for evaluating the subtemplate. Subtemplates support meta-
variable lookups, that return either a subtree of the input data or a
terminal, i.e. a string value. For usability reasons, the Expr supports
more operations than necessary. The constructs of declaring string
constants and string concatenations (||) do not allow to change
the input data tree, and thus not break unparser-completeness. Note
that the template engine preserves layout information defined in the
string and no additional layout, other than specified in the string, is
emitted to the output.

The match-replace and subtemplate constructs are sufficient to
implement unparsers, and, hence, any metalanguage implementing
these constructs is (at least) unparser-complete. Figure 6 shows an
unparser for the running example language expressed in the given
template metalanguage. For the ease of comprehension, in Figure 6
and the subsequent figures demonstrating code fragments in the
template metalanguage, we adhere to the following typesetting con-
vention. Structural elements of the metalanguage, such as match
and <: are typeset in the boldface; names of subtemplates and vari-
ables are typeset in the italics; labels are underlined, and, finally,
the terminals, i.e., elements being directly placed in the output are
typeset in roman.

For usability reasons we also include in our metalanguage a
substitution construct that allows one to insert data from the in-
put directly into the template. The syntax of the substitution is
<: Expr :>. Example of the substitution construct can be found,
e.g., in Line 7 of Figure 11. This line is responsible for outputting
the string “class ” followed by the class name, that consists of the
value of the variable $state and the word “State”, i.e., the template
evaluator first determines the value of the expression between <:
and :> which must yield a string, and then replaces with this value
the placeholder in the template. One can show that the substitu-
tion can be written as a combination of subtemplates and match-
replaces [2] and, hence, it does not extend new functionality of
the metalanguage. This combination of subtemplates and match-
replaces is, however, very verbose and frequently used, so we de-
cided to provide an explicit construct for the substitution construct.

8. Case Study: Reimplementation NunniFSMGen
In this section we show that the metalanguage introduced in Sec-
tion 7 is indeed usable to specify a non-trivial code generator. As
the case study we consider reimplementation of NunniFSMGen1.
NunniFSMGen translates an abstract specification of a finite state
machine into an implementation in Java, C or C++. It uses the state
design pattern [13] to implement the state machine in the differ-
ent output languages. The original implementation is a single stage

1 http://sourceforge.net/projects/nunnifsmgen/ (accessed on May 5, 2011)

1 unparse [
2 <: match :>
3 <:Not ($x) =:> ˜ <: unparse ($x) :>
4 <:And ($x1 , $x2) =:> <: unparse ($x1) :> & <: unparse ($x2) :>
5 <:Or ($x1 , $x2) =:> <: unparse ($x1) :> | <: unparse ($x2) :>
6 <:Br ($x) =:> (<: unparse ($x) :>)
7 <:True =:> t r u e
8 <: F a l s e =:> f a l s e
9 <: end :>

10]

Figure 6. Unparser for booleans expressed in template meta-
language.

STANDBY a c t i v a t e WARMINGUP warmup
STANDBY d e a c t i v a t e − −
STANDBY hotenough ERROR !
STANDBY m a i n t e n a n c e MAINTENANCE m a i n t e n a n c e
WARMINGUP a c t i v a t e − −
WARMINGUP d e a c t i v a t e STANDBY h e a t e r o f f
WARMINGUP hotenough STANDBY h e a t e r o f f
WARMINGUP m a i n t e n a n c e MAINTENANCE h e a t e r o f f
ERROR a c t i v a t e − −
ERROR d e a c t i v a t e − −
ERROR hotenough − −
ERROR m a i n t e n a n c e MAINTENANCE −
MAINTENANCE a c t i v a t e STANDBY i n i t i a l i z e
MAINTENANCE d e a c t i v a t e − −
MAINTENANCE hotenough − −
MAINTENANCE m a i n t e n a n c e − −

Figure 7. Transition table for a central heating system.

code generator using print statements, while we reimplemented it
using a parser, a model transformation and templates.

8.1 Functionality of NunniFSMGen
NunniFSMGen is an open source tool developed by the Swiss-
based company NunniSoft. NunniFSMGen can translate an ab-
straction specification of a state machine, given as a transition table,
to a corresponding implementation in Java, C or C++. The tran-
sition table is a set of transition rules of the form startState
event nextState action: if a state machine residing in the
startState, receives an event, then the action is executed and
the state of the machine is changed to nextState.

In general, the action is implemented as a method invocation.
If, however, - is specified as an action, then no action is required
when the transition is executed. Similarly, if - is specified as a
nextState, then a transition rule does not cause a change of state.
Finally, the action can also contain an exclamation mark,!. The
exclamation mark defines that the action must throw an exception
and after that the state machine will go the errorState.

Example 8.1. Figure 7 shows the transition table of a central
heating system example delivered with NunniFSMGen. Figure 8
presents a snippet of a parser used to obtain an abstract syntax
tree representation of the state machine. The model transformation
presented in Section 8.2 uses this abstract syntax tree as input.

8.2 State Machine Implementation
NunniFSMGen implements a variant of the state pattern using the
transition table as input, where the events are handles and the states
are implemented as concrete states. The transition table cannot
be used directly for generating the code using our template meta-
language. The state pattern has a hierarchical structure, where each
state implements handlers for each event, while the transition table
is list of vectors pointing from the startState to the nextState.

143

http://sourceforge.net/projects/nunnifsmgen/

r u l e s ([
t r a n s i t i o n (”STANDBY” , ” a c t i v a t e ” ,

n e x t s t a t e (”WARMINGUP”) , a c t i o n (” warmup ”)) ,
. . .
t r a n s i t i o n (”MAINTENANCE” , ” m a i n t e n a n c e ” ,

n o n e x t s t a t e , n o a c t i o n)
])

Figure 8. Part of the abstract syntax tree of the transition table of
the central heating system.

afsm (
t r a n s i t i o n s ([

t r a n s i t i o n (”STANDBY” , e v e n t s ([
e v e n t (” a c t i v a t e ” ,

n e x t s t a t e (”WARMINGUP”) , a c t i o n (” warmup ”)) ,
e v e n t (” d e a c t i v a t e ” , n o n e x t s t a t e , n o a c t i o n) ,
e v e n t (” ho tenough ” , n e x t s t a t e (”ERROR”) ,

e r r o r a c t i o n) ,
e v e n t (” m a i n t e n a n c e ” , n e x t s t a t e (”MAINTENANCE”) ,

a c t i o n (” m a i n t a i n ”))])) ,
. . .

]) ,
e v e n t s ([” a c t i v a t e ” , ” d e a c t i v a t e ” ,

” ho tenough ” , ” m a i n t e n a n c e ”]) ,
a c t i o n s ([”warmup ” , ” m a i n t a i n ” , ” h e a t e r o f f ” ,

” i n i t i a l i z e ”])
)

Figure 9. Abstract implementation of the state design pattern of
the heater transition table.

A model transformation is necessary to map the vector based
transition table to the hierarchical based state design pattern. First,
the transformation collects all unique events from the transition
rules and stores them in the set events. Then, it collects all unique
actions from the transition rules and stores them in the set actions.
Finally, it creates a new transition rule for each state and adds
for each event a triple with the event, the nextState and the
action. Transition rules are collected in the set transitions.

Implementation of this model transformation is straight-forward.
It contains seven equations based on 18 sub-equations. The abstract
implementation of the state design pattern of the central heating
system is shown in Figure 9. The square brackets denote list, an
additional feature of the used tree format.

8.3 Original Code Generator
The original implementation of NunniFSMGen is a generator based
on print statements written in Java. Its main class contains a simple
parser for the input transition table, constructing a one-to-one in
memory representation of the transition table.

For each output language a code generator class is implemented,
containing the generator logic and object code fragments. Based on
the selected output language a code generator class is instantiated
and provided with the loaded input data.

We consider such a code generator class as a single-stage code
generator, since the different code generator classes share a signif-
icant amount of code. The shared code is not factorized out in a
model transformation. Furthermore, since it is a single-stage code
generator, the model transformations are mostly entangled between
object code artifacts. During the initialization of the code generator,
only the set of events and the set of states are calculated.

To illustrate the adverse effects of the single-stage code gen-
eration used in NunniFSMGen consider the generation of the
particular code for an event. Implementation of the required be-
havior is selected based on a set of conditions distinguishing

Transition
table

Parser

Abstract
syntax

tree

Trans-
former

Abstract
state

machine

Repleo +
Java templates

Repleo +
C templates

Repleo +
C++ templates

Java code C code C++ code

Figure 10. Architecture of the reimplemented NunniFSMGen.

between the following five kinds of events: no state change,
no action (startState event - -); no state change, with ac-
tion (startState event - action); state change, no action
(startState event nextState -); state change, with action
(startState event nextState action); state change to error-
State with error action (startState event errorState !).
Since NunniFSMGen exists of three almost independent single-
stage code emitters for C, C++ and Java, the set of conditions
corresponding to the choice of the implementation is cloned be-
tween the code emitters. Moreover, similarity between C++ and
Java means that the code emitters for these languages are almost
identical, except for the object code. In case of the code emitter
for C, the meta code is almost the same, but the approach used to
implement the exception handling in the object code differs from
the C++ and Java implementations.

8.4 Reimplemented Code Generator
The reimplementation of NunniFSMGen is based on a two-stage
architecture using a parser, a model transformation phase and tem-
plates. The previous discussed input model parser and model trans-
formations are output language independent. The output is an ab-
stract syntax of a state machine, which is still output language inde-
pendent. The templates in the second stage contain the additional
information in the object code to implement an output language
specific instantiation of a state machine. In this case for output lan-
guages, C, C++ and Java, a set of templates is defined.

Code shared by the templates is limited to the meta code re-
sponsible for traversing the input data tree: while all templates use
the same abstract representation of the state machine as input data,
tailored model transformations are unnecessary for each one of the
output languages. In this way the model transformation has been
separated from the part of the code generator that depends on the
output language. The architecture of the reimplemented NunniF-
SMGen is shown in Figure 10. The templates are evaluated by
Repleo [2]. Repleo is a template engine based on the unparser-
complete metalanguage as defined in this article.

144

1 t r a n s i t i o n s [
2 <: match :>
3 <: [t r a n s i t i o n ($ s t a t e , $ e v e n t s) ,
4 $ t r a n s i t i o n s] =:>
5 t e m p l a t e [
6 <: $ s t a t e + ” S t a t e . j a v a ” :> ,
7 c l a s s <: $ s t a t e + ” S t a t e ” :> e x t e n d s S t a t e
8 {
9 . . .

10 }
11]
12 <: t r a n s i t i o n s ($ t r a n s i t i o n s) :>
13 <: [] =:>
14 <: end :>
15]

Figure 11. Java snippet of the template implementa-
tion.

1 e v e n t c o d e [
2 s t a t i c i n t <: $ s t a t e + ” S t a t e ” + $ e v e n t :>
3 (s t r u c t FSM ∗fsm ,
4 vo id ∗ o) {
5 i n t r e t = 0 ;
6 . . .
7 <: match $ n e x t s t a t e :>
8 <: n e x t s t a t e ($ n e x t s t a t e n a m e) =:>
9 i f (r e t < 0)

10 fsm−>c h a n g e S t a t e (fsm ,
11 &m E r r o r S t a t e) ;
12 e l s e
13 fsm−>c h a n g e S t a t e (fsm ,
14 &<: ”m ” + $ n e x t s t a t e n a m e
15 + ” S t a t e ” :>) ;
16 <: n o n e x t s t a t e =:>
17 i f (r e t < 0)
18 fsm−>c h a n g e S t a t e (fsm ,
19 &m E r r o r S t a t e) ;
20 <: end :>
21 . . .
22 r e t u r n r e t ;
23 }
24]

Figure 12. C snippet of the template implementation.

Figures 11 and 12 show snippets of the reimplementation us-
ing templates in Java and C, respectively. For the sake of brevity
we do not include the reimplementation in C++, which can be
found in [2]. Observe the use of the built-in template template
(e.g., Figure 11, Lines 5–11). The template engine evaluates the
second argument of template and stores the result in a file with
the name obtained by evaluating its first argument. So, if $state is
STANDBY then, evaluation of Lines 5–11 of Figure 11 results in
storing the Java code generated by Lines 7–10 in the file called
STANDBYState.java.

8.5 Evaluation
The introduction of templates based on an unparser-complete meta-
language has improved the NunniFSMGen implementation. The
new implementation uses a two-stage architecture, where the old
implementation almost directly generates code from the transition
table in a single-stage architecture. The two-stage architecture in-
cluding the unparser-complete metalanguage enforced a clear sep-
aration between the model transformation and the code generation.
The first stage parses and rewrites the transition table in order to
get an abstract implementation of the state design pattern. The sec-
ond stage is responsible for generating the concrete code for the
different output languages.

We expect that the strict separation between the model transfor-
mation and the code generation reduces the implementation effort
required to add a new output language. Furthermore, the original
code generator contains code clones between emitters for the dif-
ferent output languages. Presence of clones might lead to diverging
evolution of the emitters, i.e., a risk of inconsistent behavior of, e.g.,
Java and C implementations of the same state machine. By separat-
ing model transformation encapsulating the shared code from code
generation depending on the target language, we successfully elim-
inate the cross-emitter clones. Clone elimination is also apparent in
the counts of source lines of code in the original implementation
vs. the reimplementation: 1430 vs. 738 source lines of code.

Clearly, while the templates foster reuse and help in eliminat-
ing of the cross-emitter clones, there is still the potential for cloned
templates. No cloned templates were found in the reimplementa-
tion. In general, cloned templates are an indication of a non-optimal
design.

9. Related work
Numerous template engines and associated metalanguages can be
found both in the academia and the industry [4, 16, 21, 25]. Unfor-
tunately, formal expressivity requirements of such languages have
attracted less attention from the research community with [21] be-
ing the only notable exception we are aware of. Similarly to [21]
we advocate the separation between the view and the model.

ERb [16] is a text template interpreter for the programming
language Ruby. ERb introduces special syntax constructs to embed
Ruby code in a text file. The metalanguage of ERb is Ruby and
thus Turing-complete, as a result there is no restriction on the code
ERb can generate. However, to implement an unparser, a developer
should take into account that metavariables are globally accessible
and writable. Hence, it is necessary to specify a stack mechanism
in the meta-code explicitly.

JSP [4] is a template based system developed by Sun Microsys-
tems. It is designed for generating dynamic web pages and XML
messages in Java-based enterprise systems, where the evaluation
is tuned for performance. The Java language is available as meta-
language in JSP pages, although special tag libraries are available to
provide concise constructs. JSP supports variables and a for loop,
and hence, JSP goes beyond the unparser-completeness. Moreover,
it has the same problem with scoping of meta-variables as ERb. It is
necessary to use different scopes for different variables, introduc-
ing unwanted boilerplate code.

Velocity [25] is a template evaluator for Java. It provides a basic
template metalanguage, called Velocity Template Language, to ref-
erence Java objects. The metalanguage of Velocity is also Turing-
complete, as it is possible to set variables. In case of implementing
unparsers, Velocity has the same problem with the variable scopes
as ERb and JSP. As a consequence temporary variables are neces-
sary when a subtemplate is recursively called.

The main lessons learned from the related template engines is
that not only the available constructs are important, but also the
variable scope handling in the evaluator. Furthermore, the meta-
language should be powerful enough to handle all (path-closed)
regular tree languages. For example, StringTemplate [21] is not ca-
pable of referring to the different children of a node if the children
have the same label. An extra input data transformation is necessary
to guarantee the input tree can be accepted by StringTemplate.

We have used the ideas of unparser-completeness to construct
the new version of a metalanguage for our template engine Re-
pleo [3]. Repleo supports syntax-safe template evaluation, i.e., it
guarantees that the generator always instantiates a sentence belong-
ing to the desired output language or in case it cannot produce such
a sentence, that the evaluator terminates with an error message.
The first version of Repleo [3] was based on a metalanguage in-

145

spired by ERb [16] and the ideas of [21]. Two major differences
can be found between the first version of the metalanguage and the
current one. First, the metalanguage of [3] provides a broader set
of expressions, allowing the template designer to violate the sepa-
ration of concerns principle, e.g., by defining mathematical opera-
tions on the input data. Second, the metalanguage of [3] did not sup-
port recursive template evaluation, which is necessary for unparser-
completeness. The reimplementation of Repleo [2] is based on the
notion of unparser-completeness, such as presented in this article.

Finally, unparse and desugar ◦ parse can be seen as inverse
to each other. Such properties as linearity (cf. Theorem 4.6) are
often assumed in studies of program inversion [14]. Furthermore,
relation between parsers and unparsers (pretty printers) was studied
in [1, 23]. We stress, however, that our goal is different: unlike [1,
23] we do not focus on finding a unified framework for parsers
and unparsers but apply these interrelated notions to formalize the
requirements for a metalanguage of a template engine in the context
of the model view controller architecture.

10. Conclusions
In this paper, following the ideas of Parr [21], we have presented a
formal notion of unparser-completeness. Unparser-completeness of
a metalanguage provides the balance between expressivity and re-
strictiveness. On one hand, the metalanguage is expressive enough
to implement an unparser, and, hence, can instantiate any seman-
tically correct program in the object language. On the other hand,
the metalanguage is restricted enough to enforce the model-view
separation in terms of Parr [21].

Next, we showed that a linear deterministic top-down tree-to-
string transducer is powerful enough to implement an unparser. Us-
ing the notion of the top-down tree-to-string transducer we have
shown that unparser-completeness is a weaker notion than Turing
completeness, i.e., unparser-complete meta-languages are not nec-
essarily Turing-complete. The enforcement of separation of con-
cerns is also met, as this transducer does not allow to express cal-
culations or modify the model.

At the end, we showed that unparser-completeness is not only a
theoretical framework. We reimplementated NunniFSMGen using
templates based on an unparser-complete metalanguage. This meta-
language enforces us to use a two-stage architecture for the reim-
plementation, which resulted in an improved separation between
model transformations and code emitting.

References
[1] A. Alimarine, S. Smetsers, A. van Weelden, M. C. J. D. van Eekelen,

and M. J. Plasmeijer. There and back again: arrows for invertible
programming. In ACM SIGPLAN workshop on Haskell, pages 86–97,
New York, NY, USA, 2005. ACM.

[2] B. J. Arnoldus. An Illumination of the Template Enigma: Software
Code Generation with Templates. PhD thesis, Technische Universiteit
Eindhoven, 2010.

[3] B. J. Arnoldus, J. W. Bijpost, and M. G. J. van den Brand. Repleo: a
Syntax-Safe Template Engine. In GPCE ’07, pages 25–32, New York,
NY, USA, 2007. ACM Press.

[4] H. Bergsten. Javaserver Pages. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2nd edition, 2002.

[5] M. G. J. van den Brand, P. E. Moreau, and J. J. Vinju. A generator of
efficient strongly typed abstract syntax trees in Java. IEE Proceedings
Software, 152(2):70–78, 2005.

[6] M. G. J. van den Brand and E. Visser. Generation of formatters for
context-free languages. ACM Transactions on Software Engineering
and Methodology, 5(1):1–41, 1996.

[7] S. Burbeck. Applications Programming in Smalltalk-80: How to use
Model-View- Controller (MVC), 1992.

[8] L. G. W. A. Cleophas. Private communication, September 2009.
[9] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,

D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and
Applications. Available on: http://www.grappa.univ-lille3.fr/tata (ac-
cessed on November 30, 2010), 2008. release November, 18th 2008.

[10] F. L. Deremer. Practical Translators for LR(k) languages. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1969.

[11] J. Engelfriet. Tree Automata and Tree Grammars. Manual written
lecture notes, 1974.

[12] J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L
systems, and two–way machines. Journal of Computer and System
Sciences, 20(2):150–202, 1980.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Boston, MA, USA, 1995.

[14] R. Glück and M. Kawabe. A program inverter for a functional lan-
guage with equality and constructors. In A. Ohori, editor, Program-
ming Languages and Systems, volume 2895 of LNCS, pages 246–264.
Springer, 2003.

[15] J. Hartmanis. Context-free languages and Turing machine computa-
tions. In Symposia in Applied Mathematics, volume 19 of Mathemat-
ical Aspects of Computer Science, pages 42–51. Amer Mathematical
Society, 1967.

[16] J. Herrington. Code Generation in Action. Manning Publications Co.,
Greenwich, CT, USA, 2003.

[17] S. C. Johnson. Yacc: Yet Another Compiler-Compiler. Technical
Report 32, Bell Laboratories, Murray Hill, NJ, USA, 1975.

[18] P. Klint, T van der Storm, and J. J. Vinju. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In
SCAM ’09, pages 168–177, Los Alamitos, CA, USA, 2009. IEEE
Computer Society Press.

[19] G. E. Krasner and S. T. Pope. A description of the model-view-
controller user interface paradigm in the Smalltalk-80 system. Journal
of Object Oriented Programming, 1(3):26–49, 1988.

[20] D. C. Oppen. Pretty printing. Technical Report STAN-CS-79-770,
Computer Science Department, Stanford University, October 1979.

[21] T. J. Parr. Enforcing Strict Model-View Separation in Template En-
gines. In WWW ’04: International Conference on World Wide Web,
pages 224–233, New York, NY, USA, 2004. ACM Press.

[22] N. Ramsey. Unparsing expressions with prefix and postfix operators.
Software: Practice & Experience, 28(12):1327–1356, 1998.

[23] T. Rendel and K. Ostermann. Invertible syntax descriptions: unifying
parsing and pretty printing. In ACM SIGPLAN Haskell symposium,
pages 1–12, New York, NY, USA, 2010. ACM.

[24] T. Sheard. Accomplishments and Research Challenges in Meta-
programming. In SAIG, volume 2196 of LNCS, pages 2–44, London,
UK, 2001. Springer.

[25] T. Sturm, J. von Voss, and M. Boger. Generating Code from UML with
Velocity Templates. In J.-M. Jézéquel, H. Hußmann, and S. Cook,
editors, UML, volume 2460 of LNCS, pages 150–161. Springer, 2002.

[26] M. G. J. van den Brand, J. S. Scheerder, J. J. Vinju, and E. Visser.
Disambiguation filters for scannerless generalized LR parsers. In
R. Horspool, editor, Compiler Construction, volume 2304 of LNCS,
pages 21–44. Springer, 2002.

[27] J. Virágh. Deterministic ascending tree automata I. Acta Cybernetica,
5:33–42, 1981.

[28] E. Visser. Stratego: A language for Program Transformation based
on Rewriting Strategies. System Description of Stratego 0.5. In RTA
’01, volume 2051 of LNCS, pages 357–361, Berlin, Heidelberg, 2001.
Springer.

[29] D. S. Wile. Abstract syntax from concrete syntax. In ICSE, pages
472–480, New York, NY, USA, 1997. ACM Press.

146

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

	Introduction
	Requirements
	Preliminaries
	Unparser
	Desugaring
	Unparser Completeness
	Metalanguage
	Case Study: Reimplementation NunniFSMGen
	Functionality of NunniFSMGen
	State Machine Implementation
	Original Code Generator
	Reimplemented Code Generator
	Evaluation

	Related work
	Conclusions

